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Six approaches to eliminating unwanted e-mail

David Mertz, Ph.D. (mertz@gnosis.cx)
Analyzer, Gnosis Software, Inc.
September 2002

The problem of unsolicited e-mail has been increasing for years, but help has arrived. In this 
article, David discusses and compares several broad approaches to the automatic elimination 
of unwanted e-mail while introducing and testing some popular tools that follow these 
approaches.

Unethical e-mail senders bear little or no cost for mass distribution of messages, yet normal e-mail 
users are forced to spend time and effort purging fraudulent and otherwise unwanted mail from their 
mailboxes. In this article, I describe ways that computer code can help eliminate unsolicited 
commercial e-mail, viruses, trojans, and worms, as well as frauds perpetrated electronically and 
other undesired and troublesome e-mail. In some sense, the final and best solution for eliminating 
spam will probably take place on a legal level. In the meantime, however, you can do some things 
from a code perspective that can serve as an interim solution to the problem, until (if ever) the laws 
begin to evolve at the same rate as public frustration. 

Considering matters technically -- but also with common sense -- what is generally called "spam" is 
somewhat broader than the category "unsolicited commercial e-mail"; spam encompasses all the e-
mail that we do not want and that is only very loosely directed at us. Such messages are not always 
commercial per se, and some push the limits of what it means to be solicited. For example, we do not 
want to get viruses (even from our unwary friends); nor do we generally want chain letters, even if 
they don't ask for money; nor proselytizing messages from strangers; nor outright attempts to defraud 
us. In any case, it is usually unambiguous whether a message is spam, and many, many people get 
the same such e-mails. 

The problem with spam is that it tends to swamp desirable e-mail. In my own experience, a few 
years ago I occasionally received an inappropriate message, perhaps one or two each day. Every day 
of this month, in contrast, I received many times more spams than I did legitimate correspondences. 
On average, I probably get 10 spams for every appropriate e-mail. In some ways I am unusual -- as a 
public writer, I maintain a widely published e-mail address; moreover, I both welcome and receive 
frequent correspondence from strangers related to my published writing and to my software libraries. 
Unfortunately, a letter from a stranger -- with who-knows-which e-mail application, OS, native 
natural language, and so on, is not immediately obvious in its purpose; and spammers try to slip their 
messages underneath such ambiguities. My seconds are valuable to me, especially when they are 
claimed many times during every hour of a day. 

Hiding contact information
For some e-mail users, a reasonable, sufficient, and very simple approach to avoiding spam is simply 
to guard e-mail addresses closely. For these people, an e-mail address is something to be revealed 
only to selected, trusted parties. As extra precautions, an e-mail address can be chosen to avoid 
easily guessed names and dictionary words, and addresses can be disguised when posting to public 
areas. We have all seen e-mail addresses cutely encoded in forms like 
"<mertzHIDDEN@NOSPAM.gnosis.cx>" or "echo zregm@tabfvf.pk | tr A-Za-z N-ZA-Mn-za-m". 

In addition to hiding addresses, a secretive e-mailer often uses one or more of the free e-mail services for "throwaway" addresses. If 
you need to transact e-mail with a semi-trusted party, a temporary address can be used for a few days, then abandoned along with 
any spam it might thereafter accumulate. The real "confidantes only" address is kept protected. 
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In my informal survey of discussions of spam on Web-boards, mailing lists, the Usenet, and so on, I've found that a category of e-
mail users gains sufficient protection from these basic precautions. 

For me, however -- and for many other people -- these approaches are simply not possible. I have a publicly available e-mail 
address, and have good reasons why it needs to remain so. I do utilize a variety of addresses within the domain I control to detect 
the source of spam leaks; but the unfortunate truth is that most spammers get my e-mail address the same way my legitimate 
correspondents do: from the listing at the top of articles like this, and other public disclosures of my address. 

Looking at filtering software
This article looks at filtering software from a particular perspective. I want to know how well different approaches work in 
correctly identifying spam as spam and desirable messages as legitimate. For purposes of answering this question, I am not 
particularly interested in the details of configuring filter applications to work with various Mail Transfer Agents (MTAs). There is 
certainly a great deal of arcana surrounding the best configuration of MTAs such as Sendmail, QMail, Procmail, Fetchmail, and 
others. Further, many e-mail clients have their own filtering options and plug-in APIs. Fortunately, most of the filters I look at 
come with pretty good documentation covering how to configure them with various MTAs. 

For purposes of my testing, I developed two collections of messages: spam and legitimate. Both collections were taken from mail I 
actually received in the last couple of months, but I added a significant subset of messages up to several years old to broaden the 
test. I cannot know exactly what will be contained in next month's e-mails, but the past provides the best clue to what the future 
holds. That sounds cryptic, but all I mean is that I do not want to limit the patterns to a few words, phrases, regular expressions, etc. 
that might characterize the very latest e-mails but fail to generalize to the two types. 

In addition to the collections of e-mail, I developed training message sets for those tools that "learn" about spam and non-spam 
messages. The training sets are both larger and partially disjoint from the testing collections. The testing collections consist of 
slightly fewer than 2000 spam messages, and about the same number of good messages. The training sets are about twice as large. 

A general comment on testing is worth emphasizing. False negatives in spam filters just mean that some unwanted messages make 
it to your inbox. Not a good thing, but not horrible in itself. False positives are cases where legitimate messages are misidentified as 
spam. This can potentially be very bad, as some legitimate messages are important, even urgent, in nature, and even those that are 
merely conversational are ones we do not want to lose. Most filtering software allows you to save rejected messages in temporary 
folders pending review -- but if you need to review a folder full of spam, the usefulness of the software is thereby reduced. 

1. Basic structured text filters
The e-mail client I use has the capability to sort incoming e-mail based on simple strings found in specific header fields, the header 
in general, and/or in the body. Its capability is very simple and does not even include regular expression matching. Almost all e-
mail clients have this much filtering capability. 

Over the last few months, I have developed a fairly small number of text filters. These few simple filters correctly catch about 80% 
of the spam I receive. Unfortunately, they also have a relatively high false positive rate -- enough that I need to manually examine 
some of the spam folders from time to time. (I sort probable spam into several different folders, and I save them all to develop 
message corpora.) Although exact details will differ among users, a general pattern will be useful to most readers: 

●     Set 1: A few people or mailing lists do funny things with their headers that get them flagged on other rules. I catch 
something in the header (usually the From:) and whitelist it (either to INBOX or somewhere else).

●     Set 2: In no particular order, I run the following spam filters: 
❍     Identify a specific bad sender.
❍     Look for "<>" as the From: header.
❍     Look for "@<" in the header (lots of spam has this for some reason).
❍     Look for "Content-Type: audio". Nothing I want has this, only virii (your mileage may vary).
❍     Look for "euc-kr" and "ks_c_5601-1987" in the headers. I can't read that language, but for some reason I get a huge 

volume of Korean spam (of course, for an actual Korean reader, this isn't a good rule).

●     Set 3: Store messages to known legitimate addresses. I have several such rules, but they all just match a literal To: field. 

●     Set 4: Look for messages that have a legit address in the header, but that weren't caught by the previous To: filters. I find 
that when I am only in the Bcc: field, it's almost always an unsolicited mailing to a list of alphabetically sequential addresses 
(mertz1@..., mertz37@..., etc). 

●     Set 5: Anything left at this point is probably spam (it probably has forged headers to avoid identification of the sender). 

2. Whitelist/verification filters



A fairly aggressive technique for spam filtering is what I would call the "whitelist plus automated verification" approach. There are 
several tools that implement a whitelist with verification: TDMA is a popular multi-platform open source tool; ChoiceMail is a 
commercial tool for Windows; most others seem more preliminary. (See Resources later in this article for links.) 

A whitelist filter connects to an MTA and passes mail only from explicitly approved recipients on to the inbox. Other messages 
generate a special challenge response to the sender. The whitelist filter's response contains some kind of unique code that identifies 
the original message, such as a hash or sequential ID. This challenge message contains instructions for the sender to reply in order 
to be added to the whitelist (the response message must contain the code generated by the whitelist filter). Almost all spam 
messages contain forged return address information, so the challenge usually does not even arrive anywhere; but even those 
spammers who provide usable return addresses are unlikely to respond to a challenge. When a legitimate sender answers a 
challenge, her/his address is added to the whitelist so that any future messages from the same address are passed through 
automatically. 

Although I have not used any of these tools more than experimentally myself, I would expect whitelist/verification filters to be very 
nearly 100% effective in blocking spam messages. It is conceivable that spammers will start adding challenge responses to their 
systems, but this could be countered by making challenges slightly more sophisticated (for example, by requiring small human 
modification to a code). Spammers who respond, moreover, make themselves more easily traceable for people seeking legal 
remedies against them. 

The problem with whitelist/verification filters is the extra burden they place on legitimate senders. Inasmuch as some 
correspondents may fail to respond to challenges -- for any reason -- this makes for a type of false positive. In the best case, a slight 
extra effort is required for legitimate senders. But senders who have unreliable ISPs, picky firewalls, multiple e-mail addresses, non-
native understanding of English (or whatever language the challenge is written in), or who simply overlook or cannot be bothered 
with challenges, may not have their legitimate messages delivered. Moreover, sometimes legitimate "correspondents" are not 
people at all, but automated response systems with no capability of challenge response. Whitelist/verification filters are likely to 
require extra efforts to deal with mailing-list signups, online purchases, Web site registrations, and other "robot correspondences". 

3. Distributed adaptive blacklists
Spam is almost by definition delivered to a large number of recipients. And as a matter of practice, there is little if any 
customization of spam messages to individual recipients. Each recipient of a spam, however, in the absence of prior filtering, must 
press his own "Delete" button to get rid of the message. Distributed blacklist filters let one user's Delete button warn millions of 
other users as to the spamminess of the message. 

Tools such as Razor and Pyzor (see Resources) operate around servers that store digests of known spams. When a message is 
received by an MTA, a distributed blacklist filter is called to determine whether the message is a known spam. These tools use 
clever statistical techniques for creating digests, so that spams with minor or automated mutations (or just different headers 
resulting from transport routes) do not prevent recognition of message identity. In addition, maintainers of distributed blacklist 
servers frequently create "honey-pot" addresses specifically for the purpose of attracting spam (but never for any legitimate 
correspondences). In my testing, I found zero false positive spam categorizations by Pyzor. I would not expect any to occur using 
other similar tools, such as Razor. 

There is some common sense to this. Even those ill-intentioned enough to taint legitimate messages would not have samples of my 
good messages to report to the servers -- it is generally only the spam messages that are widely distributed. It is conceivable that a 
widely sent, but legitimate message such as the developerWorks newsletter could be misreported, but the maintainers of distributed 
blacklist servers would almost certainly detect this and quickly correct such problems. 

As the summary table below shows, however, false negatives are far more common using distributed blacklists than with any of the 
other techniques I tested. The authors of Pyzor recommend using the tool in conjunction with other techniques rather than as a 
single line of defense. While this seems reasonable, it is not clear that such combined filtering will actually produce many more 
spam identifications than the other techniques by themselves. 

In addition, since distributed blacklists require talking to a server to perform verification, Pyzor performed far more slowly against 
my test corpora than did any other techniques. For testing a trickle of messages, this is no big deal, but for a high-volume ISP, it 
could be a problem. I also found that I experienced a couple of network timeouts for each thousand queries, so my results have a 
handful of "errors" in place of "spam" or "good" identifications. 

4. Rule-based rankings
The most popular tool for rule-based spam filtering, by a good margin, is SpamAssassin. There are other tools, but they are not as 
widely used or actively maintained. SpamAssassin (and similar tools) evaluate a large number of patterns -- mostly regular 
expressions -- against a candidate message. Some matched patterns add to a message score, while others subtract from it. If a 
message's score exceeds a certain threshold, it is filtered as spam; otherwise it is considered legitimate. 



Some ranking rules are fairly constant over time -- forged headers and auto-executing JavaScript, for example, almost timelessly 
mark spam. Other rules need to be updated as the products and scams advanced by spammers evolve. Herbal Viagra and heirs of 
African dictators might be the rage today, but tomorrow they might be edged out by some brand new snake-oil drug or 
pornographic theme. As spam evolves, SpamAssassin must evolve to keep up with it. 

The README for SpamAssassin makes some very strong claims: 

In its most recent test, SpamAssassin differentiated between spam and non-spam mail correctly in 99.94% of cases. 
Since then, it's just been getting better and better! 

My testing showed nowhere near this level of success. Against my corpora, SpamAssassin had about 0.3% false positives and a 
whopping 19% false negatives. In fairness, this only evaluated the rule-based filters, not the optional checks against distributed 
blacklists. Additionally, my spam corpus is not purely spam -- it also includes a large collection of what are probably virus 
attachments (I do not open them to check for sure, but I know they are not messages I authorized). SpamAssassin's FAQ disclaims 
responsibility for finding viruses; on the other hand, the below techniques do much better in finding them, so the disclaimer is not 
all that compelling. 

SpamAssassin runs much quicker than distributed blacklists, which need to query network servers. But it also runs much slower 
than even non-optimized versions of the below statistical models (written in interpreted Python using naive data structures). For 
more on the pros and cons of SpamAssassin, read "Stamp out spam with SpamAssassin" (developerWorks, September 2002). 

5. Bayesian word distribution filters
Paul Graham wrote a provocative essay in August 2002. In "A Plan for Spam" (see Resources later in this article), Graham 
suggested building Bayesian probability models of spam and non-spam words. Graham's essay, or any general text on statistics and 
probability, can provide more mathematical background than I will here. 

The general idea is that some words occur more frequently in known spam, and other words occur more frequently in legitimate 
messages. Using well-known mathematics, it is possible to generate a "spam-indicative probability" for each word. Another simple 
mathematical formula can be used to determine the overall "spam probability" of a novel message based on the collection of words 
it contains. 

Graham's idea has several noteworthy benefits: 

1.  It can generate a filter automatically from corpora of categorized messages rather than requiring human effort in rule 
development. 

2.  It can be customized to individual users' characteristic spam and legitimate messages. 
3.  It can be implemented in a very small number of lines of code. 
4.  It works surprisingly well. 

At first blush, it would be reasonable to suppose that a set of hand-tuned and laboriously developed rules like those in 
SpamAssassin would predict spam more accurately than a scattershot automated approach. It turns out that this supposition is dead 
wrong. A statistical model basically just works better than a rule-based approach. As a side benefit, a Graham-style Bayesian filter 
is also simpler and faster than SpamAssassin. 

Within days -- perhaps hours -- of Graham's article being published, many people simultaneously started working on implementing 
the system. For purposes of my testing, I used a Python implementation created by a correspondent of mine named John Barham. I 
thank him for providing his implementation. However, the mathematics are simple enough that every other implementation is 
largely equivalent. 

There are some issues of data structures and storage techniques that will effect operating speed of different tools. But the actual 
predictive accuracy depends on very few factors -- the main significant factor is probably the word-lexing technique used, and this 
matters mostly for eliminating spurious random strings. Barham's implementation simply looks for relatively short, disjoint 
sequences of characters in a small set (alphanumeric plus a few others). 

6. Bayesian trigram filters
Bayesian techniques built on a word model work rather well. One disadvantage of the word model is that the number of "words" in 
e-mail is virtually unbounded. This fact may be counterintuitive -- it seems reasonable to suppose that you would reach an 
asymptote once almost all the English words had been included. From my prior research into full text indexing, I know that this is 
simply not true; the number of "word-like" character sequences possible is nearly unlimited, and new text keeps producing new 
sequences. This fact is particularly true of e-mails, which contain random strings in Message-IDs, content separators, UU and 
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base64 encodings, and so on. There are various ways to throw out words from the model (the easiest is just to discard the 
sufficiently infrequent ones). 

I decided to look into how well a much more starkly limited model space would work for a Bayesian spam filter. Specifically, I 
decided to use trigrams for my probability model rather than "words". This idea was not invented whole cloth, of course; there is a 
variety of research into language recognition/differentiation, cryptographic unicity distances of English, pattern frequencies, and 
related areas, that strongly suggest trigrams are a good unit. 

There were several decisions I made along the way. The biggest choice was deciding what a trigram is. While this is somewhat 
simpler than identifying a "word", the completely naive approach of looking at every (overlapping) sequence of three bytes is non-
optimal. In particular, considering high-bit characters -- although occurring relatively frequently in multi-byte character sets (in 
other words, CJK) -- forces a much bigger trigram space on us than does looking only at the ASCII range. Limiting the trigram 
space even further than to low-bit characters produces a smaller space, but not better overall results. 

For my trigram analysis, I utilized only the most highly differentiating trigrams as message categorizers. But I arrived at the chosen 
numbers of "spam" and "good" trigrams only by trial and error. I also picked the cutoff probability for spam rather arbitrarily: I 
made an interesting discovery that no message in the "good" corpus was assigned a spam probability above .0071 other than two 
false positives in the .99 range. Lowering my cutoff from an initial 0.9 to 0.1, however, allowed me to catch a few more message in 
the "spam" corpus. For purposes of speed, I select no more than 100 "interesting" trigrams from each candidate message -- 
changing that 100 to something else can produce slight variations in the results (but not in an obvious direction). 

Summary
Given the testing methodology described earlier, let's look at the concrete testing results. While I do not present any quantitative 
data on speed, the chart is arranged in order of speed, from fastest to slowest. Trigrams are fast, Pyzor (network lookup) is slow. In 
evaluating techniques, as I stated, I consider false positives very bad, and false negatives only slightly bad. The quantities in each 
cell represent the number of correctly identified messages vs. incorrectly identified messages for each technique tested against each 
body of e-mail, good and spam. 

Table 1. Quantitative accuracy of spam filtering techniques 

Technique
Good corpus
(correctly identified vs. incorrectly identified)

Spam corpus
(correctly identified vs. incorrectly identified)

"The Truth" 1851 vs. 0 1916 vs. 0

Trigram model 1849 vs. 2 1774 vs. 142

Word model 1847 vs. 4 1819 vs. 97

SpamAssassin 1846 vs. 5 1558 vs. 358

Pyzor 1847 vs. 0 (4 err) 943 vs. 971 (2 err)

Resources 

●     The TDMA home page provides more information about the Tagged Message Delivery Agent.

●     You can get more information about ChoiceMail from DigitalPortal Software.

●     Pyzor is a Python-based distributed spam catalog/filter. 

●     Vipul's Razor is a very popular distributed spam catalog/filter. Razor is optionally called by a number of other filter tools, 
such as SpamAssassin. 

●     SpamAssassin is the most popular rule-based spam filter. Read more about it in "Stamp out spam with SpamAssassin" 
(developerWorks, September 2002). 

●     Read Paul Graham's essay "A Plan for Spam." 

●     Eric Raymond has created a fast implementation of Paul Graham's idea under the name "bogofilter." In addition to using 
some efficient data representation and storage strategies, bogofilter tries to be smart about identifying what makes a 
meaningful word. 

●     My own trigram-based categorization tools are still at an early alpha or prototype level. However, you are welcome to use 

http://tmda.net/
http://www.digiportal.com/product4.html
http://pyzor.sourceforge.net/
http://razor.sourceforge.net/
http://spamassassin.taint.org/
http://www-106.ibm.com/developerworks/linux/library/l-spam/
http://www.paulgraham.com/spam.html
http://www.tuxedo.org/~esr/bogofilter/
http://gnosis.cx/download/trigram-tools.zip


them as a basis for development. They are public domain, like all the tools I write for developerWorks articles.

●     Lawrence Lessig has written a number of books and articles that insightfully contrast what he metonymically calls "west-
coast code" and "east-coast code," in other words, the laws passed in Washington D.C. (and elsewhere) versus the software 
written in Silicon Valley (and elsewhere). I've written a short review of Lessig's Code and Other Laws of Cyberspace. See 
Lessig's Web site for more to think about. 

●     Find more Linux articles in the developerWorks Linux zone.

About the author
David Mertz dislikes spam. He wishes to thank Andrew Blais for assistance in this article's testing, as well as for 
listening to David's peculiar fascination with trigrams and their distributions. David may be reached at 
mertz@gnosis.cx; his life pored over at http://gnosis.cx/publish/. Suggestions and recommendations on this, past, or 
future articles are welcome. 

 

What do you think of this article? 

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)
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