
1

Summer 2001 CSE 4317: Safety 1

Computers in Safety-Critical 
Systems

Ethics and Computing

Chapter 6

Summer 2001 CSE 4317: Safety 2

Motivation
� When human welfare is at stake, the price 

for haphazard practices is severe.
� Computing professionals must exercise 

extreme care to ensure a system is safe.
� Striving for safe systems is an important 

part of any Code of Ethics.



2

Summer 2001 CSE 4317: Safety 3

Codes of Ethics and Safety
� AITP Standards of Conduct

� To the best of my ability, insure that the 
products of my work are used in a 
socially responsible way.

� Software Engineering Code of Ethics
� Ensure adequate testing, debugging, and 

review of software and related documents 
on which you work.

Summer 2001 CSE 4317: Safety 4

ACM Code of Ethics

1. Strive to achieve the highest quality, 
effectiveness and dignity in both the 
process and products of professional work.

5. Give comprehensive and thorough 
evaluations of computer systems and their 
impacts, including analysis of possible 
risks.



3

Summer 2001 CSE 4317: Safety 5

IEEE Code of Ethics

1. Accept responsibility in making 
engineering decisions consistent with the 
safety, health and welfare of the public, 
and disclose promptly factors that might 
endanger the public or the environment.

3. Be honest and realisticin stating claims or 
estimates based on available data.

Summer 2001 CSE 4317: Safety 6

IEEE Code of Ethics

6. Maintain and improve our technical 
competenceand undertake technological 
tasks for others only if qualified by 
training or experience, or after full 
disclosure of pertinent limitations.



4

Summer 2001 CSE 4317: Safety 7

Safety-Critical Systems

Requirements for computing professionals:

1. Know techniques for developing computer 
systems that are as safe as practical

2. Be able to arrive at a reasonably objective 
assessment of the level of safety

Summer 2001 CSE 4317: Safety 8

Factors Involved in Accidents

� Organizational
� Managerial
� Technical
� Sociological
� Political



5

Summer 2001 CSE 4317: Safety 9

Safety-Critical Systems

Definition 1: Systems with some real-time control 
whose failure can have a life-threatening impact.

Examples
� Aircraft/air traffic control
� Nuclear reactor control
� Missile systems
� Medical treatment systems

Summer 2001 CSE 4317: Safety 10

Safety-Critical Systems

Definition 2: Systems with some real-time control, 
including the software used in the design of 
physical systems and structures, whose failure 
can have a life-threatening impact.

Examples
� Bridge and building design
� Selection of waste-disposal sites
� Analytical models of medical treatment



6

Summer 2001 CSE 4317: Safety 11

Engineering a Minimum-Risk 
System

� “Managing Murphy’s Law: Engineering a 
Minimum-Risk System” [Bell, 1989]

� Safety should be a design objective
� Risk, hazard and reliability
� Conducting a thorough risk assessment of 

a system

Summer 2001 CSE 4317: Safety 12

Safety-Related Terminology
� Reliability: probability that a system component 

will perform its intended function for a specified 
period of time under normal conditions

� Hazard: potential for injury or danger
� Risk: combination of the probability of an 

undesired event with the magnitude of foreseeable 
consequences (e.g., property damage, personal 
injury)



7

Summer 2001 CSE 4317: Safety 13

Assessing Risk
� Tabulate phases of system’s mission

� Identify risk sensitivities
� Varied time-related consequences

� Diagram each phase and determine logical 
relationships among components

� Failure modes and effects analysis
� Event tree analysis
� Fault tree analysis

� Quantify probability of failures

Summer 2001 CSE 4317: Safety 14

Managing Risk
� Determine acceptable levels of risk
� Subjective judgments about system costs and 

benefits (e.g., human life, environment)
� Additional safety-related add-on systems

� Redundant or standby systems
� Safety shutdown systems
� Emergency procedures

� Uncertainty



8

Summer 2001 CSE 4317: Safety 15

How and Why Failures Occur
� “Avoiding Weak Links” in the Inside Risks

column of Communications of the ACM 
[Neumann, 1992] (1st edition)

� Difficulty in assessing multiple-event failures
� Independent multiple events
� Correlated multiple events
� Multiple-event failures do arise and should be 

better defended against

Summer 2001 CSE 4317: Safety 16

Independent Multiple Events

� Independent tests err harmoniously
� Three independent test methods used in 

aircraft flutter analysis
� Each test found no flutter problem
� Each test in error for independent reasons
� False conclusion exposed only after tail 

broke off in test flight, killing the crew



9

Summer 2001 CSE 4317: Safety 17

Independent Multiple Events

� Simultaneous failures
� Three disk drives supporting the Toronto 

Stock Exchange each failed 
independently

� Exchange shut down for three hours on 
August 16, 1989

Summer 2001 CSE 4317: Safety 18

Correlated Multiple Events

� In 1989, New England maintained seven 
logical alternative links to ARPANET

� All seven physical links in one cable
� Cable accidentally cut

� Associated Press lost both primary and 
backup connections (purposely separated 
cables) when both accidentally cut



10

Summer 2001 CSE 4317: Safety 19

Correlated Multiple Events
� Four-hour collapse of ARPANET in 1980

� Absence of parity checking in memory 
(implementation deficiency)

� Concurrent existence of a legitimate 
status message along with two bogus 
versions (dropped bits)

� Weak garbage-collection algorithm 
(design oversimplification)

Summer 2001 CSE 4317: Safety 20

Correlated Multiple Events
� AT&T long distance saturation in 1990

� Inability to detect load- and time-dependent 
flaw in switch recovery software, despite 
extensive testing

� Presence of flaw in every switching system of 
that type

� Untolerated hardware fault mode that caused a 
switch to crash and recover

� Due to heavy traffic, neighboring switches 
unable to adjust

� Repeated propagation of the effect throughout 
all switches



11

Summer 2001 CSE 4317: Safety 21

How and Why Failures Occur
� “How Engineers Lose Touch” [Ferguson, 1993]

� Engineers must verify that the system analyzed 
on paper corresponds well to the one in the 
field

� A computer model is an abstraction, not an 
exact depiction of the system in the real world

� Viewing models as abstractions serves as a 
warning that not all aspects of the environment 
may be accurately modeled

� Nearly all engineering failures result from 
faulty judgments, not faulty calculations

Summer 2001 CSE 4317: Safety 22

Risk Analysis
� “The Limits of Risk Analysis” [Bell, 1989] 

(1st edition)
� Responsibility for a system rests on the 

system’s top managers
� Managers must seriously consider and act 

on results of risk analysis
� Risk analysis is only a tool to help 

managers make informed decisions



12

Summer 2001 CSE 4317: Safety 23

Evaluating Safety-Critical Software

� “Evaluation of Safety-Critical Software” 
[Parnas et al., 1990]

� Standards for safety-critical applications
� Documentation requirements
� Testing requirements
� Guidelines for software structure

Summer 2001 CSE 4317: Safety 24

Evaluating Safety-Critical Software

� Software exhibits weak-link behavior
� Failures in unimportant parts of the code can 

have unexpected repercussions elsewhere
� Recommends safety-critical software be as small 

and simple as possible
� Move non-safety-critical functions to other 

computers
� All parts of safety-critical software is safety 

critical



13

Summer 2001 CSE 4317: Safety 25

Software vs. Hardware Controllers

� Software more complex
� Software more sensitive to errors
� Software harder to test
� Software failures correlated in design, not 

manufacture or use
� Lack of professional software engineering 

standards (coming)

Summer 2001 CSE 4317: Safety 26

Software Testing Concerns
� Software cannot be tested for correctness
� Software reliability and availability are 

difficult to predict accurately
� Software trustworthiness (lack of serious 

flaws) cannot be practically measured
� Software testing still important
� Software testing benefits from independent 

validators (e.g., IBM’s clean room)



14

Summer 2001 CSE 4317: Safety 27

Software Reviews
� Review for correct intended function
� Review for maintainable, understandable, well-

documented structure
� Review modules to verify algorithm and data 

structure design are consistent with specified 
behavior

� Review code for consistency with the algorithm 
and data structure design

� Review test adequacy

Summer 2001 CSE 4317: Safety 28

Measuring Software Reliability
� Reliability is the probability that an input will not 

cause a failure
� Trustworthinessis the probability that no serious 

design error remains after the software passes a set 
of randomly chosen tests

� Availability is the fraction of time the system is 
running and assumed to be ready to function



15

Summer 2001 CSE 4317: Safety 29

Measuring Software Reliability
� Software failure rates cannot be predicted 

from failure rates of individual lines of code 
or subprograms

� Recommends finite-state machine model of 
software

� Failure rates viewed as percentage of 
unacceptable (next-state, output) behavior

� Statistical hypothesis testing

Summer 2001 CSE 4317: Safety 30

Case Study
� “An Investigation of the Therac-25 Accidents” 

[Leverson and Turner, 1993]
� Failure in a radiation therapy system (1985-87) 

resulting in six incidents of massive overdoses
� Several failures traced to errors in special 

timing-dependent sequences of events in the 
user interface

� Software errors cited, although hardware and 
software interlocks could have prevented 
hazards



16

Summer 2001 CSE 4317: Safety 31

Points to Remember
� Risk analysis is a difficult task that has a 

subjective component
� Assumptions about the logical independence of 

different types of failures are often not supported 
by the physical realization of the system

� A software model of a real physical system can 
never perfectly represent all relevant aspects of the 
system

� Over-reliance on computer models that are not 
properly validated invites disaster

Summer 2001 CSE 4317: Safety 32

Points to Remember
� Disregarding the contribution of software in a 

safety-critical system is a mistake
� Software components do contribute to risk and 

failure
� Focusing only on the software component of a 

safety-critical system is a mistake
� Most failures have multiple contributing causes
� Most failures could have been prevented by 

improving any one of several system 
components



17

Summer 2001 CSE 4317: Safety 33

Points to Remember
� No widely accepted standard for developing 

safety-critical software
� There are many techniques for software design, 

evaluation, review and testing that can be used to 
produce higher quality software

� Professionals engaged in development of safety-
critical software should know and use such 
techniques

Summer 2001 CSE 4317: Safety 34

Resources

� The Risks Digest
� http://catless.ncl.ac.uk/Risks/

� CMU Software Engineering Institute
� http://www.sei.cmu.edu/


