Message Authentication Code

A message authentication code, or MAC is used to guarantee the integrity and authenticity of a message - it does not provide secrecy. It is used when Alice and Bob have somehow determined a common key K known only to the two of them. Its like a "keyed one-way function" - a secret fingerprint that can only be calculated by Alice and Bob.

Basically the message is "encrypted" using any decent block cipher of your choice in CBC mode, with an IV of 0. However only the final block of "ciphertext" is kept - that's the MAC. This is called CBC-MAC.

[image: image1.wmf]1

mod

.

2

1

1

3

3

2

1

1

1

3

2

1

1

1

3

2

4

Å

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

x

d

c

b

a

d

c

b

a

[image: image2.wmf]1

2

2

+

=

n

n

F

[image: image3.wmf]1

2

2

+

=

n

n

F

[image: image4.wmf]1

mod

.

2

1

1

3

3

2

1

1

1

3

2

1

1

1

3

2

4

Å

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

x

d

c

b

a

d

c

b

a

Alice then transmits the {P1,P2,P3,MAC}. Bob can calculate the MAC himself and compare it with that received from Alice. If they match the message has not been tampered with - and it must have come from Alice. Of course the message can also be encrypted for secrecy, using a second key, so Alice transmits Ek{P1,P2,P3,MAC}.

Note that since a birthday attack cannot be deployed, MAC length can be shorter than for example the 160-bit size of the SHA one-way function.

Understanding AES/Rijndael

The new AES is the block cipher Rijndael. Rijndael is based on an earlier block cipher called SQUARE, which is actually somewhat easier to understand. SQUARE has a 128-bit block size, which can be considered as 16 bytes. These 16-bytes are arranged in a square - hence the name.

The i-th round operation can be described as

R[ki] = E[ki] ((((((
Where the ki are the 16-byte sub-keys associated with the i-th round.

The state of the block cipher is maintained in a sixteen-byte buffer, conceptually arranged as a square. The round function operates on this state directly. The state is initialised with the plaintext, and after 8-rounds the state contains the ciphertext. The full enciphering process can be described as

Square[K] = R[k8] (R[k7] (R[k6] (R[k5] (R[k4] (R[k3] (R[k2] (R[k1] (E[k0] ((-1

Note that SQUARE and Rijndael are not Feistel Ciphers. They (like SAFER) use the inverse of the round function to achieve decryption, using the same basic structure, except that (and (are replaced by (-1 and (-1 and different round key values.

The operation E[ki] means simply that 16-bytes of the sub-key are XORed with the 16-bytes of the current state.

The operations (, (and (are described below.

The (operation is self-explanatory - a swapping of rows and columns. The (operation uses an 8-bit byte-to-byte S-Box, again rather like the one used in SAFER. The inverse operation (-1 uses the inverse S-Box. In Rijndael the S-Box is referred to as the ByteSub transformation.

The (operation causes diffusion along each row. It replaces every element in a row with the dot product of the row with a fixed constant vector C, where C = [2,3,1,1]. For each element in the row this vector is rotated one place.

The rows are now considered as polynomials with coefficients in GF(28), of degree 3, so the first row is for example

a (b.x (c.x2 (d.x3
The new value for a is now found as the dot product of this polynomial with the C vector, modulo x4 (1. Note that this fixed polynomial C does have an inverse wrt x4 (1, the polynomial whose co-efficients are drawn from [B,E,9,D] hex. The whole operation boils down to a matrix multiplication modulo x4 (1.

The combined effect of (, (and (is to thoroughly mix the state under the influence of the key, with particularly excellent diffusion and hence an early onset of the strict avalanche effect after only 2 rounds. Compare with a Feistel cipher where only have of the state bits are operated on in each round.

Note that in Rijndael the (operation is performed on the columns not the rows, and the (operator is substituted by a cyclic rotation of each row.

Rijndael is designed to be resistant to Linear and Differential cryptanalysis, and indeed its structure allows proofs of such resistance.

One of the neat things about Rijndael is that while it can be described in terms of 8-bit operations - and hence can be efficiently implemented on an 8-bit processor, it can also be implemented on 32-bit processors by carrying out operations on whole rows or columns.

Understanding IDEA

The IDEA block cipher is based on some novel ideas. It is not strictly a Feistel cipher, and it does not use any S-Boxes. The novel concept is that of "mixing operations from different algebraic groups". IDEA has been around for 10 years, and no successful cryptanalysis has been achieved.

An “involution” is a self inverse function. This is required to ensure a basic requirement of any block cipher - that it is reversible.

The involution at the heart of the IDEA cipher is a good example.

Now express X and Y in terms of A and B. If these values of X and Y are passed through the same circuitry again, we recover A and B.

It only remains to design a suitable complex nonlinear function F() which mixes in the key K with the data. As usual many identical rounds are used to mix the key and data.

IDEA is ideal for 16-bit processors, and uses only three 16-bit operations:-

(
16-bit XOR

+
16-bit integer addition

· Multiplication mod 65537, except that 0 represents the value 65536

Note that 65537 is a prime Fn, the 4th Fermat number

Fermat once famously argued that all such numbers are prime, and they are for n=0,1,2,3 and 4, but not apparently for any n>4. So the idea does not extend to 32-bit operations - which is a pity.

The fact that 65537 is a prime means that every number has a unique inverse mod 65537, and that (define a group operator. In a sense this function is the IDEA S-Box. Note that many instruction sets support a 16-bit integer multiplication instruction, which can be used to efficiently implement this operation, based on the following algorithm:-

x=a.b/2n

y=a.b mod 2n
The integer division instruction on the 8086 provides both x and y.

Then

a.b mod (2n + 1)
=
(y-x) if y(x

=
(x-y+2n + 1) if y<x

The simple mathematics make it easy to analyse IDEA's resistance to cryptanalysis.

The "muddle" in IDEA is achieved by mixing the three different algebraic group operations. The structure is organised so that the output of one operation is never used as the input to an operation of the same type.

The three operations are incompatible in the sense that

1.
No pair of the 3 operations satisfies a distributive law. For example

a + (b(c) ((a+b) ((a+c)

2. No pair of the three operations satisfies an associative law. For example

a + (b(c) ((a+b) (c

IDEA has 8-rounds. The structure of each round is illustrated below.

Understanding RC5

RC5 is deceptively simple. Encryption can be completely described by the following pseudo-code, where the input block is

A = A + K[0]

B = B + K[1]

For i = 1 to r

A=((A(B) <<< B) +K[2i]

B=((B(A) <<< A) +K[2i+1]

Where A and B are w bit halves of the state, r is the number of rounds, and b is the number of bytes in the key. A particular implementation of RC5 is referred to as RC5-w/r/b, for example RC5-32/12/16. The operation <<< x implies a rotation by the number obtained from the log2(w) low-order bits of x.

The really novel idea in RC5 is the data-dependent rotations, which provide the non-linearity. The amount of rotation depends on the plaintext itself. This is intended to make cryptanalysis difficult. The structure itself is, in a sense, modified by the data it is processing.

It is not difficult to see that RC5 has in fact a Feistel structure. It may be re-written as:-

L1 = L0+K0

R1 = R0+K1

for i = 2 to 2r+1

Li = Ri-1

Ri = ((Li-1 (R i-1) <<< R i-1) (Si
Understanding SAFER
SAFER has a particularly elegant structure. It is not a Feistel Cipher - decryption is achieved by the inverse function. It is very much targeted at 8-bit micro-processors.

The function exp is the S-Box constructed from the finite field GF(257). The elements are calculated from 45x mod 257. Note that 45 is a primitive root wrt the prime 257, so this operation generates all the elements in the field. The function log is the inverse S-Box.

The function 2-PHT where PHT stands for the Pseudo-Hademard Transform, takes care of the diffusion. If the functions inputs are a1 and a2, then its outputs b1 and b2 are defined as

b1 = 2.a1 + a2
b2 = a1 + a2
Where the + implies ordinary byte addition, modulo 256. The multiplication by 2 is of course implemented as a shift-left by 1 bit

The block size is 64-bits. Variations has been suggested with both 64-bit and 128-bit keys. For the former 8 rounds are recommended, 10 rounds for the latter.

Since addition is more prevalent than XOR in this design, attempts at differential cryptanalysis use integer subtraction as the metric of "difference".

What makes a good S-Box??

Understanding TEA

TEA is a very simple cipher. It compensates for a weak (but fast) round function by simply using more rounds - 32 are recommended. It is, in part, designed to be implementable from memory.

"It is a Feistel type routine although addition and subtraction are used as the reversible operators rather than XOR. The routine relies on the alternate use of XOR and ADD to provide non-linearity. A dual shift causes all bits of the key and data to be mixed repeatedly. "

The key consists of 4 32-bit longs, and hence is 128-bits. The block size is 64-bits.

Routine, written in the C language, for encoding and decoding with key k[0] - k[3]. Data in v[0] and v[1].

void encode(long* v, long* k) {

unsigned long n=32, y=v[0],z=v[1], sum=0,

delta=0x9e3779b9; /* a key schedule constant */

while (n-->0)

{

sum += delta ;

y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;

z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;

}

v[0]=y ; v[1]=z ; }

void decode(long* v,long* k) {

unsigned long n=32, sum, y=v[0], z=v[1],

delta=0x9e3779b9 ;

sum=delta<<5 ;

while (n-->0)

{

z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;

y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;

sum-=delta ;

}

v[0]=y ; v[1]=z ; }

S-Box design & Differential Cryptanalysis

S-Boxes should be designed if possible to be resistant to Differential Cryptanalysis. Consider this 8 bit S-Box

S[000] = 011

S[001] = 110

S[010] = 101

S[011] = 100

S[100] = 000

S[101] = 010

S[110] = 111

S[111] = 001

Consider now the input XOR difference of 010

X

X*

000

010

001

011

010

000

011

001

100

110

101

111

110

100

111

101

For these inputs the outputs and the output XOR differences are:-

Y

Y*

Y(Y*

011

101

110

110

100

010

101

011

110

100

110

010

000

111

111

010

001

011

111

000

111

001

010

011

As can be seen the distribution of differences is not even.

Y(Y*

Occurrences

000

0

001

0

010

2

011

2

100

0

101

0

110

2

111 2

Can you find an input XOR difference

1. Which gives an even distribution?

2. For which only one output XOR is possible?

Consider now a block cipher which uses the S-Box in a configuration like this (which is quite common, for example DES or SAFER), where K represents some subkey bits:-

Suppose A=001 and A* = 011, and Y(Y* = 111. Since X(X* = K(A(K(A* = A(A* = 010, there are just two possible candidates for X = {110,100}.

This implies that there are just two candidates for the key bits K, which are the X candidates XORED with A=001. So the sub-keys bits must be in the set {111,101}.

If a second triple of {A,A*,Y(Y*} were available, a second set of candidate keys could be found. The true key would be in the intersection of these sets.

In this way Differential Cryptanalysis may be used to break ciphers like DES.

(

a

(

S[a]

S[b]

b

c

d

f

e

j

i

g

h

o

n

m

k

p

l

S[c]

S[d]

S[g]

S[h]

S[f]

S[e]

S[l]

S[k]

S[j]

S[i]

S[p]

S[o]

S[n]

S[m]

a

e

f

l

k

j

i

g

h

b

c

d

p

o

n

m

(

d

h

l

p

m

i

e

n

j

c

g

k

o

f

b

a

� EMBED Equation.3 ���

B

A

W

Y

X

K

F

� EMBED Equation.3 ���

K1

K2

K3

K4

K5

K6

S-Box

K

Y

A

A*

Y*

K

S-Box

X

X*

K

MAC

P2

K

P1

add

add

xor

xor

add

xor

add

xor

Key

exp

log

log

exp

exp

log

log

exp

add

xor

xor

add

add

xor

xor

add

Key

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

2-PHT

K

P0

_1036335152.unknown

_1036395480.unknown

