All-or-Nothing Encryption and The Package Transform

Here is another way of strengthening a weak block cipher. The basic idea is to force a brute-force cryptanalyst to test each of his candidate keys against the whole of the cipher-text, and not just against one block. As things stand successfully decrypting just one block of cipher-text, yields one block of recognisable plain-text (even in CBC mode).

First the whole message is transformed into a "pseudo-message", which has the property that all of it (every block of it) must be known in order to retrieve the original message. This is called an "all-or-nothing" transform. This is a transformation, not encryption (although it uses an encryption algorithm).

Then the pseudo-message is encrypted in CBC mode to produce the ciphertext. This construction clearly satisfies the requirement.

To be concrete, say we are trying to strengthen DES

Choose a random AES key K, and fix a second publicly known key k.

If the message blocks are m1, m2, m3, m4, .. mn, compute the sequence t1, t2, t3, t4 …tn and tn+1 where

ti = mi (EK(i) for i = 1 to n

and

tn+1 = K (h1 (h2 (h3 (h4 (…(hn
where

hi = Ek(ti (i) (effectively a one-way hash of each block)

It is easy to see that this transform is invertible, as once all the ti are known, the key K can be retrieved, and hence the mi recovered. This transformation is in fact an invertible pre-processing step.

K = tn+1 (h1 (h2 (h3 (h4 (…(hn

And

mi = ti (EK(i) for i = 1 to n

It is easy to see that if any block of the pseudo-message is unknown, then the key K cannot be computed, and no individual plain-text blocks recovered.

So if I use 40-bit DES to encrypt an 8 megabyte message, an adversary must decrypt the entire 8-magabyte file in order to test a single 40-bit key. This expands the work-factor by a factor of 1 million, or 20-bits. So the overall complexity has been raised from 240 to 260. If the message were shorter, it might be useful to pad it out with random junk.

In a context where strong encryption were outlawed, a technique like this might be used to get around the problem.

Chaffing & Winnowing

There have traditionally been two methods for secure transmission of information through a hostile environment: Steganography (where the data is hidden, but not encrypted), and Cryptography (where the data is encrypted, but not otherwise hidden). Of course both ideas can be used together.

Here is a third idea. To winnow is to eliminate the useless bits from the good bits. Chaffing is the deliberate insertion of useless bits. As in separating the Wheat form the Chaff.

Again this method does not use encryption, although it does use an encryption algorithm. Again it subverts attempts at legislating for the use of "weak" cryptography.

A necessary component for this method is a Message Authentication Code, or MAC. This is a keyed one-way function. A typical implementation might use the SHA algorithm, and calculate the MAC as H(K,H(K,M)). An obvious use for such a MAC is to ensure that a plain-text document is not tampered with in transit. The inclusion of a secret key essentially makes it a private one-way hash between the two parties involved. A MAC need only be 64-bits in length for adequate security.

Alice shares a key K with Bob. But this key is not used for encryption, but only to calculate and check MACs.

Now Alice breaks up her message into packets, each one authenticated by a MAC. The message contents are "in the clear". The packets may be numbered sequentially, so

(1,"Hi Bob",465231)

(2,"Meet me at",782290)

(3,"7 pm",344287)

(4,"Love Alice",312265)

Now we add chaff to the message. A chaff packet also consists of plaintext, but now with a random, invalid MAC.

(1,"Hi Bob",465231)

(1,"Hello Larry",827382)

(2,"Meet me at",782290)

(2,"See you at",232323)

(3,"7 pm",344287)

(3,"6 PM",8723172)

(4,"Yours Susan",2323452)

(4,"Love Alice",312265)

Since Bob knows K, he will ignore the chaff packets, and get the real message. What can an eavesdropper learn??

Taking the idea a step further, break the original message into individual bits. Put each bit in a packet with a good MAC, and its inverse in another packet with a bad MAC.

(1,0,37823)

(1,1,73847)

Now we achieve perfect confidentiality! But each message bit has been sent in the clear, unencrypted.

Note that anyone can generate chaff - it doesn't require knowledge of K. A random MAC will be an invalid MAC. The chaff could be inserted by a third party - Charles. So now Alice and Bob are transmitting to one another in the clear - not breaking any laws. Charles, who doesn't know any encryption keys and isn't using encryption, inserts the chaff. Alice and Bob have achieved confidentiality - but who broke the law, and who gets prosecuted?

Alternatively Charles could be multiplexing many communications links between many pairs of correspondents - and what is Wheat to one is Chaff to the others.

The method as described so far is very inefficient, but in fact it can be made practical. Alice pre-processes her 1 megabit message using an "All or Nothing" transform. Then she breaks it into 1024-bit packages and adds her MAC. The message is still not encrypted! Charles adds chaff packets as 1024 bit random junk, with a random "MAC".

An eavesdropper must pick out all the Wheat packets correctly in order to find the original message.

Ideas like these make it very difficult to legislate to control the use of Cryptography.

Securing a network - Kerebos

Assume a tightly-coupled network, typically within a single organisation. Multiple Clients and Servers exist, and need to correspond. Assume that all the computers have synchronised clocks.

It is in general a good idea to use an ephemeral random "session key" for each new communication. If the same key is used for a long time, it is liable to be compromised.

We assume the existence with-in the network of a particular server, the "trusted authority" TA. This computer is subject to good physical security. Each client on the system shares a secret key with the TA. Typically this will be derived via a one-way hash from a memorised pass-phrase. All messages are transmitted encrypted in CBC mode. Messages are "time-stamped". This is to prevent re-play attacks, where an attacker attempts to re-use an old message.

The protocol is quite complex. Assume the user with identity U wants to correspond with user V. Both U and V have their own secret keys Ku and Kv, both of which are also known to TA.

1. U asks the TA for a session key to communicate with V

2. The TA chooses a random key session K, decides on its lifetime L, and determines the current time T.

3. The TA computes M=EKu(K,V,T,L) and N=EKv(K,U,T,L) and sends both to U.

4. U decrypts M to find K,T,L and V, and then computes an authenticator A=EK(U,T), and sends N and A to V. U checks that the key is within its valid lifetime (from T to T+L), and that the decrypted "V" is the same as V with whom he wants to communicate.

5. V decrypts N to find K,T,L and U, and finds out who wants to communicate with him. V then uses the discovered session key K to decrypt A to find T and U again. These values are compared with those found before. If everything is OK, V computes B=EK(T+1) and sends it back to U.

6. U decrypts B and verifies that the result is T+1.

Both U and V now share a session key for further transmission of data.

The messages M and N are used to provide secrecy in the transmission of the session key K. On the other hand A and B are used to provide Key Confirmation, that is to enable U and V to convince one another that they do indeed share the same session key - basically by using the key to encrypt a known quantity. Note that knowledge of a pass-phrase is sufficient to authenticate the identity of an individual.

This protocol is complex, but apparently safe, even from malicious clients. It is widely implemented. Practical problems are that the TA needs to be on-line and available at all times, or all communication will be impossible. Also the TA needs to securely store a lot of secret keys, one for each user. The requirement for synchronised clocks is awkward. No formal proof of security is possible, although it has stood the test of time.

Kerebos does not support the concept of perfect forward secrecy. This requires it to be computationally infeasible for any third party to determine the session key used in a particular communication, even if all parts of the protocol are recorded for later analysis. Clearly the TA can eavesdrop any communication.

Using Public key methods much more elegant solutions are possible, that do allow perfect forward secrecy.

The Kerebos idea does not scale well to something like the Internet. There is no TA. The basic problem that needs to be solved is this; how does an individual organise mutual secret session keys with numerous individuals in different countries whom he has never met?

Key-Exchange

Clearly a major problem is that of key exchange or key distribution. In the old days of classical cryptology two individuals might meet in a secret place and exchange a mutual secret key, which would be used to encrypt communications. Note that any communication that subsequently arrived encrypted using this key, could be presumed to have come from the other individual (as they were the only two people to have this key). This simple technique therefore provides both secrecy and authentication.

However in the modern world of the internet/mobile phone it is extremely inconvenient to meet in person, and the secure management of many different keys would be required to maintain private communications with multiple individuals.

Is it possible to design a protocol to negotiate a session key with one individual when many others can eavesdrop every step of the protocol?

Surprisingly, yes it is.

Merkle’s puzzles

Consider a puzzle whose solution consists of the puzzle number and a secret key. Say the key is a 64 bit hex number. Now generate a million of such puzzles in order.

[0 12a5b783532f7cd3]

[1 54fc39a4a8b7519d]

[2 3e658c47a65ac3bb]

etc.,

Each puzzle is of equal difficulty, and its contents can be determined after about 5 minutes work on your computer. The secret key component can be used to commence a secure communication using a conventional cipher algorithm

It is important to note that everything between the square brackets constitutes the puzzle. In particular the puzzle must be solved to reveal its number. Now transmit the puzzles in random order to a friend, in the presence of your worst enemy.

Your friend picks one puzzle at random, solves it in 5 minutes, and shouts back its number. You look up the puzzle in your ordered list, and now you both have the same key! Your worst enemy has intercepted the entire million puzzles, and also knows the puzzle number. However - how to find it? The only way is to start “opening” the puzzles one after another - and expect to try about half a million of them before getting lucky. Assuming the same amount of computing power is available to all participants, that’s nearly 5 years work.

Now the big point here is that it isn’t impossible for the enemy to determine the key, its just much more difficult. The difference between solving one puzzle and solving half a million. So the idea is to make it computationally infeasible for an outsider to determine the key.

As a mind game Merkle’s puzzles get us through the conceptual problem. We now see that such a thing is indeed possible. But there must be a better way - one million puzzles are a bit unwieldy. Using number theoretic techniques and Public Key Cryptography very practical methods that are fast and require very little storage are possible.

Key Exchange using a box with 2 locks

Sometimes simple “mind-games” can let us see more clearly what is possible when intuition lets us down. Consider a box with room for two locks. This device can be used for secret message exchange. A box locked at least once is secure from prying eyes. Assume I buy one key/lock combination and you buy another. Note that the key is needed for both locking and unlocking.

I generate and place a random 128-bit AES key in the box, and close my lock on the box. I send the box to you. You close your lock on the box and send the box back to me. I now open and remove my lock and send the box back to you. You open and remove your lock and recover the message. At all stages in the communication the box was locked at least once.

This is Shamir’s three-pass protocol. But we still need an enabling technology to apply this protocol to messages exchanged between computers.

Practical solution

To implement such a scheme it is important that the locks can be opened in any order. For this reason a classic symmetric block cipher can not be used. If we were to use such a scheme to encrypt a message with my key, and then encrypt it again with your key, decryption would have to take place in the reverse order to recover the message.

This is where the mathematical structure of number theoretic cryptography becomes useful. To implement the protocol, we both agree on a common prime large p. I generate a random secret encrypting exponent a and its inverse mod p-1. You generate your secret encrypting exponent b and its inverse mod p-1. These encrypting and decrypting secrets are kept to ourselves (note: this is not public key cryptography). To transmit a message m, I calculate ma mod p and send it to you. You apply your lock by further raising this quantity to the power b. So now the message is double-locked as mab mod p. To recover the message we both need to apply our decrypting exponents, to find the a-th root and the b-th root. But the order doesn’t matter! I can find the a-th root first to get mb mod p first, then you get the b-th root of this quantity to recover the message.
Quantum Mechanics and Cryptography

The science of quantum mechanics has a bearing on Cryptology, both on Cryptanalysis - through the possibility of immensely powerful quantum computers, and on Cryptography - through the development of unbreakable ciphers.

Quantum Cryptography can be used to solve the key distribution problem, in a provably unbreakable way. The eavesdropper's basic problem is that any attempt to read the quantum traffic, will in fact disrupt it in a detectable way. This arises from Heisenburg's uncertainty principle. This is practical technology - British Telecom recently built a successful 10km fiber optic test rig, and used it to exchange keys. The current record is 50Km. It has also been implemented in open air, over about 2km. This is how it works:-

Alice sends Bob a stream of photons, randomly polarized in one of 4 directions, horizontally, vertically, left-diagonal or right diagonal

|
|
/
-
-
\
-
|
-
/
Bob has a polarisation detector. He can set these to measure rectilinear polarisation, or diagonal polarisation - but not both. Measuring with one destroys the possibility of measuring with the other. You only get one chance. So he sets them at random.

X
+
+
X
X
X
+
X
+
+

If Bob has set his detector correctly, he will record the correct polarization, otherwise he gets a random result. He doesn't know the difference.

/
|
-
\
/
\
-
/
-
|

Bob tells Alice which settings he used "X++XXX+X++". Alice tells Bob which ones he got the setting right for, in this case "2,6,7 and 9"

So now both Alice and Bob share the information |\--, which can be interpreted as 0011 if horizontal and left diagonal = 0 and vertical and right diagonal = 1 by convention. So 4 bits have been swapped.

An eavesdropper must try and do what Bob does to determine the polarisation. But half her guesses will be wrong, and since a wrong guess changes the polarisation, she cannot help but introduce errors, and if she does Alice and Bob will not end up with the same key.

There is no such thing as passive eavesdropping in the quantum world.

Quantum Computing

Quantum computing "logic" in theory at least allows multiple solutions to a problem to be determined simultaneously.

From a recent issue of Physics today:-

"Quantum mechanics could change everything. In 1994, Peter Shor of AT&T Laboratories invented a quantum algorithm for efficient factoring of large numbers. The state of a quantum computer is a superposition of exponentially many basis states, each of which corresponds to a state of a classical computer of the same size. By taking advantage of interference and entanglement in this system, a quantum computer can perform in a reasonable time some tasks that would take ridiculously long on a classical computer. Shor's discovery propelled the then-obscure subject of quantum computing into a dynamic and rapidly developing field, and stimulated scores of experiments and proposals aimed toward building quantum computers.

Another remarkable discovery was made by Lov Grover of Bell Laboratories, Lucent Technologies, who in 1996 invented a quantum searching algorithm (see Physics Today, October 1997, page 19). To find one particular item among N objects requires checking O(N) items classically. With Grover's algorithm, a quantum computer need only look up items O(PRIVATE "TYPE=PICT;ALT="(N) times. It can be used to radically speed up the exhaustive key search of DES (that is, trying all 256 possibilities).

If a quantum computer is ever constructed in the future, much of conventional cryptography will fall apart! To provide the same security, the key lengths of symmetric schemes like DES would have to be doubled due to Grover's algorithm. The most commonly used public key schemes are RSA and others based on discrete logarithms or elliptic curves; Shor's algorithm breaks all of them. Even if it is decades until a sufficiently large quantum computer can be built, this is a matter of current concern: Some data, such as nuclear weapons designs, will still need to remain secret, and it is important that today's secret messages cannot be decoded tomorrow. "

However this is much more speculative technology. A few quantum logic gates have been built, but nothing approaching a quantum computer yet exists, and may never prove practical.

You can take it that the Military in particular are spending billions researching this weird technology…….

A Match-Making Protocol

Cryptographic protocols have some surprising applications!

Alice and Bob are out on a Blind date with Mary and Michael. At the end of the night Michael wants to know if Alice & Bob fancy each other, without causing embarrassment. The protocol should output a 1 if they do fancy each other, and a 0 otherwise. But if for example Alice doesn't fancy Bob while Bob fancies Alice, the outcome will be 0 without Alice knowing whether or not Bob fancies her.

Michael takes out a pack of 5 playing cards, consisting of 3 spades and 2 hearts. He gives a spade and a heart to each of Alice and Bob, and puts the remaining spade face-down on the table. Bob now puts his 2 cards on top of the card on the table, the heart on top if he fancies Alice, otherwise the spade on top.

Alice now puts her two cards on top, this time a heart on the bottom means she fancies Bob, otherwise the spade on the bottom.

Michael now picks up the five cards, and cuts them continuously, until the random cyclic permutation is unknown to all. Then he lays the cards down face up in a circle. If the two hearts are beside each other, Alice and Bob fancy eachother.

For example if Alice fancies Bob and visa versa the cards go down like

SSHHS

The hearts will remain beside one another after the cuts

Otherwise the cards go down as one of

SHSHS, or SHSSH, or SSHSH

Which are, cyclicly, identical.

This is an example of a "bit commitment" scheme. In the more general scenario Alice wants to commit to a prediction, but does not want to reveal it to Bob until sometime later. Bob on the other hand wants to be sure that Alice cannot renege on the prediction.

A bit-commitment scheme can be easily implemented using a one-way function.

Alice generates two random strings R1 and R2, and calculates C=H(R1,R2,b), where b is the bit and H is a one way function.

Alice sends C and R1 to Bob. Alice is now committed to b. Bob cannot reverse the function and discover b.

When Alice wants to reveal her prediction, she sends Bob R1, R2 and b. Bob calculates H(R1,R2,b), and compares this with C, and checks that the R1 values are the same.

For Alice to cheat she would have to find a value r2 such that H(R1,r2,B) = H(R1,R2,b), but the one-way function is collision free. By sending R1, she makes her commitment.

The value that Alice sends to Bob is called a blob. It is easy to see how the problem of tossing a coin over the phone can be solved using these methods:-

1. Alice sends Bob a blob, committing to a 0 or 1

2. Bob guesses the bit

3. Alice reveals the bit. Bob wins if he guessed right.

The Dining Cryptographers Problem

Alice, Bob and Carol go out for a meal. At the end of it they are told by the waiter that the bill has already been paid. Naturally they wish to know if one of them paid, or else a third party. At the same time they don't want to embarrass the benevolent party if it should prove to be one of themselves.

So a protocol is required which will reveal if one of them paid, without revealing who it was. It is assumed that all three will enter into the protocol honestly.

Each takes out a coin, and flips it. By careful positioning of the menus each can also see the outcome of the coin-toss to their own left, but no others.

Each now states "same" or "different" depending on whether or not their own coin and the other one that they can see are the same or different. However the payer, if indeed one of them has paid, states the opposite of what he sees. If the number of people saying "different" is odd, then one of themselves paid - but no-one knows which - otherwise it was a third party.

In the case above, assume none of them paid. Then Bob says "same", Alice and Carol say "different".

Assume now that Bob paid. He now says "different", and they all know someone paid, but Alice for example can't tell if it was Carol or Bob. Could have been either.

The same idea can be expanded to any amount of diners.

A curiosity, but one with a serious application.

Assume a group of individuals wish to communicate securely over the internet, but wish to do so anonymously, so that each is unaware of who expressed a particular viewpoint. An algorithm based on the Dining Cryptographers allows unconditional sender and recipient untraceability.

The group arranges themselves in a circle. At regular clock ticks, they all flip a coin with their left-hand neighbours - using perhaps our Blob-based coin-tossing algorithm. Each announces "same" or "different". The group can be taken as emitting 0000000000 as long as each is calling it as they see it.

If one now wishes to transmit, they call it wrong when they want to transmit a 1, and they call it right when they want to transmit a 0. In that way a message emerges from the group, but no-one knows who it is coming from.

There are a few practical difficulties - if two or more decide to transmit simultaneously, the message that emerges is a mixture of both. But this is a problem that also arises in for example contention networks like Ethernet, and the same solution applies - if a collision is detected all parties back off and retry a random time later.

These protocols assume the good-will of all involved. Clearly a single malicious member could destroy the protocol.

Stream Ciphers - LFSRs

A Stream Cipher works as a pseudo-one-time-pad. It outputs a bit (or a byte) of random information which is then XORed with the message stream. It naturally generates a single bit (or byte) at each step - it does not compute a whole block on each activation.

Clearly a stream cipher might be deemed more appropriate for securing a communications link. Of course a block cipher in Cipher Feedback mode can be used in this way, but rather inefficiently, yielding only a single bit or byte on each activation of the underlying block cipher.

From the early days of electronics the feed-back shift register has been seen as having potential cryptographic use, as well as having a nice and easily analysed mathematical structure.

For example consider this simple LFSR (Linear Feedback Shift Register)

On each clock cycle the shift register is activated, and all the bits move over one place to the right. The new bit moving in on the left is formed from the XOR of the current first and last bits. From an initial state of 1111, this circuit cycles through the states

1111

0111

1011

0101

1010

1101

0110

0011

1001

0100

0010

0001

1000

1100

1110

1111

that is it cycles through all the possible 4-bit bit patterns in apparent "random" order before repeating, except for the state 0000

Clearly this is the maximum cycle size given 4 bits of internal state. The output bit generates the "random" sequence 111101011001000..

An n-bit LFSR could cycle through 2n - 1 states before repeating. To obtain a maximal cycle length the feed-back connections expressed as a polynomial mod 2 must be a primitive polynomial of degree n. A primitive polynomial over GF(2^m) is very like a primitive root in GF(p).

There is no easy way to find a primitive polynomial, except by direct search. But in practise they are not difficult to find. For example a primitive polynomial wrt GF(2128) is given by x128 + x7 + x2 + x +1, and so the LFSR

The "key" in this case is the initial state of the generator and/or the feed-back polynomial.

This will cycle through 2128-1 states before repeating.

However as it stands, it not much use for encryption. Given n bits of the output its entire state is known, and its output predictable. Even if the feed-back polynomial is unknown, it can be determined from only 2n bits of output using the Berlekamp-Massey algorithm. The basic problem of course is that they are linear.

However an LFSR is potentially a useful cryptographic component. By combining the outputs of several LFSR's in a nonlinear fashion, an unpredictable bit sequence can be generated.

Many ways have been suggested to introduce non-linearity. One idea is the Threshold generator. Here an odd number of LFSR's provide input to a threshold gate. A threshold gate outputs 1 if the majority of inputs are 1, otherwise it outputs 0. If the LFSR's periods are relatively prime, then a generator with very long period is obtained. Another idea is to use LFSR output to provide the clock pulses.

A stream cipher of this kind is used in GSM Mobile Phones. It is called A5. Three LFSR's of degree 19, 22 and 23 are used. The output is the XOR of all three. Each register is clocked based on its own middle bit, XORed with the inverse threshold function of the middle bits of all three registers. Usually two of the LFSR's get clocked in each round.

This is an ideal cipher for this kind of application. It is very quick in hardware. It is weak cryptography, as a simple exhaustive search breaks it - basically guess the state of the first two registers, and determine the third from the key-stream.

So basically the citizen is not in a position to tap his neighbours phone, but the government can if they wish. Also this encryption is only between the phone and the base station. The digitised voice is decrypted there, and re-encrypted using a separate key generated for use with the recipient. So the phone can still easily be tapped at the base station.

Often LFSR-based ciphers are implemented in tamper-proof hardware, and security rests in the fact that the detail of the design is a secret. The British GCHQ for many years insisted that all exported cipher equipment implemented their secret Rambutan algorithm.

A

B

C

H

T

H

…………

