The WEP protocol

The WEP protocol is a nice example of how not to do cryptography. It was invented by non-cryptographers, who were in a hurry to create a standard for wireless communications. There is an obvious need to encrypt wireless communications.

The proposed protocol used RC4. This works like a block cipher in OFB mode, being used as a pseudo-one-time-pad.

The client and the server communicate by wireless. They have a mutually agreed long-term key 128-bit k. Each message also uses an IV of v, which is just 24-bits. The message uses a simple linear CRC (Cyclic Redundancy Check) to check for any attempt to manipulates the message. Individual packets are transmitted like this -

The IV v should be different for every packet transmitted. If it should not be different then the same keystream will be re-used - which amounts to re-use of the one-time-pad.

In more detail - given C1 = RC4(v,k) (P1 and C2 = RC4(v,k) (P2, then by xoring the pair of ciphertexts together we get a value for P1(P2. Clearly knowing one plaintext reveals the other. Indeed due to English language redundancy it may not be required to know even that.

This attack would be prevented if a different IV were used for every message encrypted using the same key. However this was merely recommended in the standard and not required. So many manufacturers simply reset it to 0 every time the card was powered up. Some generated them randomly, but with only 224 possible variations, a collison can be expected after just 212 packets (bithday paradox). In practise it is common for the same IV to be re-used with the same key.

Furthermore the use of a weak CRC allows messages to be changed to an attackers advantage, using basically the same substitution attack that works against the one-time pad.

In detail: a simple linear checksum has the property that CRC(x(y) = CRC(x) (CRC(y).

Now the ciphertext C = RC4(v,k) ({M,CRC(M)}. The attacker creates {(,CRC(()} and XORs this with the ciphertext to get..

C'
= C ({(,CRC(()}

= RC4(v,k) ({M,CRC(M)} ({(,CRC(()}

= RC4(v,k) ({M((,CRC(M+()}

= RC4(v,k) ({M',CRC(M')}

and so the attacker has changed the ciphertext in such a way that it will now decrypt to M', and the CRC check will still be OK.

S-Boxes (again)

Consider the calculation of y = 2x mod 11

x

y

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

10 1

Note that 2p-1 mod p = 1 is always true - this is Fermat's little theorem. Note also that 2(p-1)/2 mod p = 1 or -1. Also of course 20 = 1.

But this example of y=f(x) is a perfectly adequate S-Box. This is why number theory is very relevant to Cryptography.

It is also a good example of a one-way function, as given x it is easy to find y (modular exponentiation problem). However given y it is very hard to find x (discrete logarithm problem).

To get a feel for a “real” cryptographic calculation, ponder the following calculation of y=2x mod p, where

x=989694019987598116925802812178423698521489258897

p=155315526351482395991155996351231807220169644828378937433223838972232518351958838087073321845624756550146945246003790108045940383194773439496051917019892370102341378990113959561895891019716873290512815434724157588460613638202017020672756091067223336194394910765309830876066246480156617492164140095427773547319

The answer is:-

136760497167960189824727153679471361829626051112090929573692842225859921311161696240788693312811781202827036144690952890913741242081482177765302704517031449761169405649240345737720871368883398870267575497320447800544520840294209049355696543649584765775977238456919963198656591882812892725472779570614012054259

The S-Box used in the SAFER algorithm is 45x mod 257. The inverse S-Box is log45 y mod 257.

So S-Boxes designed in this way are also used in Block Ciphers.

However since finite arithmetic is being used, we have an S-Box with useful and exploitable mathematical structure. For example we have (2x)y = (2y)x = 2xy mod p
 One-way Hash function

A one-way hash function H(x) is a key-less function that is easy to evaluate in one direction, but computationally infeasible to evaluate in the other.

y=H(x)

Easy

x=H-1(y)

Very Difficult

A hash, (also known as a message digest, or a cryptographically strong checksum), is a kind of fixed length digital fingerprint for a piece of data, which could itself be of any size. It is commonly used to prevent tampering with digital documents. Given a document it is easy to calculate its hash – but it is infeasible to forge a document to have a pre-determined hash. The hash is normally appended to the document. A recipient can re-calculate the hash and make sure that it is the same as that attached to the document. If the document has been tampered with, the hash will be different.

An international standard hash function is SHA – the Standard Hash Algorithm. It is designed rather like a keyless, irreversible block cipher. It produces a 160-bit hash.

The recipient calculates the hash. If it is the same as that received via the secure channel, the message has not been tampered with.

Even a single bit change in the document leads to a completely different hash value - hash functions also exhibit the strict avalanche effect.

For a full description, see g:\public\mike\crypto\sechash.txt

The chances of a tampered document having the same hash as the original are 1 in 2160
However by randomly generating 280 random documents, it is likely that 2 or more may have the same hash (as a consequence of the Birthday Paradox). This is not really a feasible attack as the two matching documents will not make any sense, but is does explain why the hash is 160 bits rather than, say, 64 bits.

If the hash were only 64-bits, then this kind of swindle may be possible:-

1. Alice prepares two versions of a contract, one favourable to Bob, the other bankrupts him.

2. Alice randomly modifies each in such a way as to not change its appearance, for example replacing SPACE with SPACE-BACKSPACE-SPACE. In this way generate 232 documents that all look identical.

3. Find a matching pair from one of each type.

4. When Bob transmits his contact to his bank, intercept it and substitute the other contract, which has the same hash value.

Very recently some new standard hash algorithms have been announced, SHA-256, SHA-384 and SHA-512, which generate 256/384 and 512 bit hashes respectively. See http://csrc.nist.gov/cryptval/shs.html

PDF spec at: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf
One way functions have all kinds of applications in Cryptography…..

Random numbers
Random numbers have an important role in cryptography. For example a random 128-bit AES session key may be used to secure a communications link. If the key is not truly randomly generated, then it may be guessed. A sophisticated attacker, knowing the method used to generate the "random" key, may exploit this knowledge and some weakness in the generation process to be able to limit in some way the extent of an exhaustive search.

Or knowing the current state of the random number generator he/she may be able to calculate what state it was in in the past, or what state it will be in in the future. In cryptography a random number generator needs only one simply stated feature; its output must be unpredictable.

Computers, being deterministic devices, are not good at generating truly random numbers. The typical pseudo-random number generators as implemented in most computer languages, are useless for Cryptography. In C it is called rand(), and it is absolutely dire (in terms of randomness, unpredictability and period). The most common type is the linear congruential generator, of the form

Xn+1 = (aXn + c) mod m
However although its output may satisfy most statistical tests for randomness, given a small part of its output its state may be determined, and its future outputs predicted. Also its prior state may be deduced. Also note that if the initial "seed" value X0 is the same, it will always generate the same "random" sequence.

However once a truly random seed with sufficient entropy has been found (say 128 bits), then it is easy for a computer to extend this indefinitely using this value to seed a cryptographically-secure pseudo-random number generator (CSPRNG).

To get the original seed, the timings between keystrokes, mouse movements, disk-drive accesses, network statistics etc may be harvested and used. See www.counterpane.com/yarrow.html for an example of this approach.

Once the seed has been found, a CSPRNG can be used to provide any number of random bits. Many practical implementations use a one-way hash function as a component to build a CSPRNG from a PRNG.

Observe how the second one-way hash function "firewalls" the internals of the PRNG. The first SHA application (to the seed) "distills" out 160 bits of true randomness from a less than completely random input seed. So the original seed may consist of a lot of relatively low-quality, low-entropy information, as long as it has within it 160 bits of entropy, or "unguessability".

There are simple lagged Fibonacci PRNGS with large amount of internal state and periods of in excess of 21000 which are suitable in this context.

The key attribute of a CSPRNG is that its output should be unpredictable. In other words it should be computationally infeasible for someone who has observed the output for any length of time, to predict with better than 50% chance whether or not the next bit will be a 0 or a 1.

There are sources of truly random numbers - radioactive decay has a physically provable randomness. Also various electronic circuits based on reverse biased diodes and chaotic oscillators generate random numbers, but such devices are pernickity and expensive.

One way to attack a cryptographic system is to attack and cripple its random bit generator, so for example its starts generating all 1's, or some predictable pattern. Its also a way to build a "trap-door" into a system. So perhaps it best that some electronic black box is not used.

Password-based Authentication

A very common scenario is where an individual logs into a remote server using a password. In this situation the password need not be very long, as a server can cut off an attacker who appears to be trying lots of passwords. It would seem however that the server needs to keep a file of the passwords agreed with each individual user. This file then becomes a tempting target of attack.

However in fact the server needs only store a one-way function of the password y=H(p). So when Alice logs on, she sends her password p. The server then calculates H(p) and compares it with the stored value.

Unfortunately a dictionary attack is still possible. By obtaining the password file and generating their own file containing the one-way hashes of say the 1,000,000 most popular passwords and comparing the two files for matches, many passwords can be found. The most popular passwords are names of boy/girl-friends, names of dogs, expletives etc. Such files are freely available from the Internet.

This kind of attack can be made more difficult by the server appending a random salt value to the password before applying the one-way function, and storing this salt value alongside the one-way function value <s,H(p,s)> in the password file. This also makes it safer to use the same password on different computers.

This makes more work for an attacker, as each individual entry will need to tested against each dictionary entry. Its clearly best to use a password that isn't in one of those password dictionaries. Some systems will not allow common passwords to be used.

The moral is that the password file, despite being protected by a one-way function, should also be physically protected. Attacks of this kind are one of the most common types of successful break-ins to computer sites.

Key Sharing
Sometimes a cryptographic key is just too important to be entrusted to one individual. For example a secret key may be used to unlock launch codes for nuclear missile launch. He may forget it. He may die and/or be killed. He may go nuts. He may be subject to duress.

The ideal solution is to issues "shares" of the key in an (n,m) threshold scheme, where n out of the m components are needed to reconstruct the key. So for example in a (3,5) scheme, any three out of 5 existing shares are needed to recreate the key. One individual may have more than one share, so flexible combinations of individuals may be sufficient to access sufficient shares. The key share information may be issued in an easy-to-use token form, like a smart-card.

Ideally if less than the required number of shares are available it should be impossible even with unlimited computing resources to determine the key. This ideal is easily achieved.

The concept is actually quite simple. Consider a (2,2) threshold scheme. Consider now the equation of a line, y=ax+k . The slope is a and the intercept is k.

The two shares can be regarded as points on the line. The shared key is the intercept k. Clearly knowing just one point on the line tells us nothing about k, indeed any value of k would be possible. But knowing two points is enough to determine the line, and find k.

In real life…

Choose a large prime 128 bit prime p. A central computer generates a random polynomial equation mod p. The order of the polynomial depends on n, so a line for n=1, a quadratic equation for n=2, a cubic for n=3 etc. The shares then are simply randomly chosen points on the curve, and m of them are distributed. However only when n of the shares are combined can the 128-bit key be determined. Otherwise you might as well just guess the key - all keys are equally likely. So having n-1 shares is the same as having no shares.

Block Cipher Structure

Block ciphers need a strongly non-linear component, but yet must be reversible. As already seen the IDEA block cipher uses an involution to achieve this.

By far the most common way to get this property is to use a Feistel round structure. Here the block of length n is divided into two halves L and R of length n/2. Then for each round

Li = Ri-1
Ri = Li-1 (f(R i-1,Ki)

Where the Ki are derived from the key scheduler. The function f(.) can be made as nonlinear as we like. Ideally it should be cheap to compute. It is not difficult to see that this structure is intrinsically reversible. (Note that x(x = 0, and x(0 = x).

 The twist in the structure aids the mixing and dispersion process.

Ki

F

R

L

Message…… maybe many megabytes…..

160-bit

hash

Convey via secure channel

Transmit via insecure channel

RAW SEED

SHA

Large PRNG internal state

PRNG

SHA

Random bits

k

Message

CRC

Random bytes from RC4(v,k)

Ciphertext

v

