Unicity Distance

Every cipher system has a "unicity distance". This is defined as the minimum amount of ciphertext-only required to allow a computationally unlimited adversary to recover the unique encryption key.

The expected unicity distance is

U = H(k) / D
Where U is the unicity distance, H(k) is the entropy of the key space (e.g. 128 for 2128 equiprobable keys, rather less if the key is a memorised pass-phrase).

D is defined as the plaintext redundancy in bits per character.

Now an alphabet of 32 characters can carry 5 bits of information per character (as 32 = 25). In general the number of bits of information is lg N, where N is the number of characters in the alphabet. So for English each character can convey lg 26 = 4.7 bits of information.

However as pointed out earlier the average amount of actual information carried per character in meaningful English text is only about 1.5 bits per character. So the plain text redundancy is D = 4.7 - 1.5 = 3.2.

Basically the bigger the unicity distance the better. For a one time pad, given the unbounded entropy of the key space, we have U = (, which is consistent with the one-time pad being theoretically unbreakable.

For a simple substitution cipher, the number of possible keys is 26! = 4.1026, the number of ways in which the alphabet can be permuted. Assuming all keys are equally likely, H(k) = lg(26!) = 88.4 bits. For English text D = 3.2, so U = 88.4/3.2 = 28.

So given 28 characters of ciphertext it should be possible to work out the plaintext and hence the key.

Unicity distance is a useful theoretical measure, but it doesn't say much about the security of a block cipher when attacked by an adversary with real-world (limited) resources. Consider a block cipher with a unicity distance of three ciphertext blocks. Although there is clearly enough information for a computationally unbounded adversary to find the right key (simple exhaustive search), this may be computationally infeasible in practise.

The unicity distance can be increased by reducing the plaintext redundancy. One way to do this is to deploy data compression techniques prior to encryption. This is a good idea anyway, as it reduces the amount of data to be encrypted.

If the plaintext redundancy is 0, then the unicity distance is infinite, and the system is unbreakable. This also implies that the plaintext is meaningless. In this case it is clearly impossible to determine when the right key has been found.

Ciphertexts greater than the unicity distance can be assumed to have only one meaningful decryption. Ciphertexts shorter than the unicity distance may have multiple plausible decryptions. Unicity distance is not a measure of how much ciphertext is required for cryptanalysis, but how much ciphertext is required for there to be only one reasonable solution for cryptanalysis.

Avalanche affect

Avalanche effect - Every bit of the key and of the plaintext should effect every bit of the ciphertext. A good block cipher achieves this after one or two rounds.

Strict Avalanche effect - A one bit change in the key or in the plaintext should, on average, change 50% of the ciphertext bits.

A good block cipher will satisfy the Strict Avalanche Condition.

Modes of Operation

A Block Cipher (AES, SAFER, IDEA, RC5) can be used to encipher data by breaking it up into 128 or 64 bit chunks

The simplest mode of operation is called ECB (Electronic Code Book)

Ci = Ek(Pi)

Pi = Dk(Ci)

There are some problems with this:-

· Identical plaintext produces identical ciphertext

· Much less than 264 plaintexts are likely to appear – allowing codebook attack. Attacker builds up a table of plaintext/ciphertext from known plaintext attacks, and subsequently just looks up plaintext given ciphertext.

· If first few plaintext blocks are always identical – known plaintext for free!

· Shuffling the Ciphertext blocks, shuffles the plaintext (and may change its meaning).

CBC – Cipher Block Chaining

Ci = Ek[Pi (Ci-1]

Pi = Dk[Ci] (Ci-1
This method is far superior, without much extra overhead.

By XORing the previous ciphertext block with the plaintext, we can be confident that the input to each block is effectively randomly distributed – every 264 possible input is equally likely (recall that the ciphertext is effectively random).

Shuffling Ciphertext blocks would affect decryption.

If plaintext block Pi is changed, Pi+1, Pi+2 etc must be re-encrypted.

The IV should be different for each message. It need not be a secret, but it is important that it cannot be tampered with, otherwise it could be tailored to change the meaning of the first plaintext block.

CFB – Cipher Feedback Mode

Here one byte at a time is encrypted. Each Ciphertext byte is shifted into the next "plaintext" block to be encrypted. The block encryption algorithm is triggered once per-byte-encrypted, and XORs the next plaintext byte with one of the bytes of the "ciphertext" block.

Note that both block ciphers are working in Encrypt Mode. An IV is used to initialise the "plaintext" block at both ends of the communication.

This is somewhat less efficient as only one byte is encrypted for each activation of the IDEA cipher (whereas in CBC mode one whole block is encrypted).

Output Feedback

This configuration is sometimes called a pseudo-one-time-pad. The block cipher is being used here as a cryptographically strong random-number generator. The input blocks at both ends are initialised to an agreed IV.

Note the IV must be changed if the same key is to be used for a second message, otherwise an identical keystream results.

A variation on OFB is called Counter mode. Here the block cipher input is not provided by feed-back, but simply increments by 1 from an agreed start value (the IV). This also allows random access to decrypt the ciphertext - simply set the block cipher input to IV+i to decrypt the i-th byte.

Note that both OFB and Counter Mode and indeed the one-time pad itself are subject to the following Active substitution attack. In a passive attack the Intruder is merely presumed to be eavesdropping, but in practise a wily intruder can do more than this. An active attack allows the intruder to break into the communication link, delete parts of the ciphertext and insert "ciphertext" of their own choosing.

Assume that the message is a credit transfer from one bank to another, and is in a typical stereotyped format. A part of the message is "transfer $1,000,000 to the bank account number 446782910".

Assume the intruder knows the format of the message, and also somehow knows the bank account number to which the money is supposed to be transferred . He breaks the link just before the account number is transmitted, and reads in the ciphertext associated with the account number. Knowing the bank account number he now recovers that part of the pad used to encrypt it (by simply XORing the known account number to the ciphertext). He next uses the recovered pad to encrypt his own bank account number. This he transmits, and then reconnects the link. Nobody notices a thing!

This is why in practise CFB is better. The feedback prevents tampering like this, and any insertions generate an error (the two block ciphers get out of synchronism) and there is a noticeable burst of errors.

Its important to understand that an attacker is not bound to follow any "rules"

Error Propagation

In the context of secure communications, the ciphertext may be transmitted from one computer to another, via a less-than-perfect medium. And of course a malicious opponent may tamper with the ciphertext….

What is the effect of a 1-bit error in the Ciphertext (that is a 1 received as a 0, or a 0 received as a 1)?

In ECB mode, due to the avalanche effect, the block in which bit error occurred in completely garbled. Other blocks are unaffected.

In OFB mode, only the single bit of plaintext is affected.

In CBC mode???

In CFB mode???

What is the effect of the loss of a block or a byte in transmission on each of these modes??

In practise communication links are made to look perfect by implementation of a data-link layer, which basically retransmits information found to have been corrupted in transit. This is done by transmitting the data in packets, each of which has a checksum appended. So in practise transmission errors do not occur. It has been suggested that in this context non-error propagation is of no real advantage, and that in fact error-propagating modes may be preferable, as they cause a complete breakdown in transmission if the ciphertext is tampered with. (A malicious opponent can still tamper with the ciphertext by making the changes, and then changing the checksum to match).

Many such modes are possible, but none are standardised.

Here is one example:-

PCFB – Propagating Cipher Feedback Mode

Strengthening a Block Cipher

In the beginning there was DES. Now DES has been analysed for 30 years, and no serious structural problems have been found with it. Its only problem is its small key size, just 56-bits. This key space can be exhaustively searched now by powerful workstations (and could probably indeed be searched even 30 years ago by powerful agencies).

Not surprisingly a lot of effort went into designs which used the known strength of DES in a configuration which increased its effective key size. These same methods may be used if so desired to improve any block cipher.

DESX

This is a very simple idea, but boosts the effective key size to over 100 bits. As well as the 56-bit key k, we also supply two extra 64 keys k1 and k2.

DESXk,k1,k2(x) = k2 (DESk(k1 (x)

The keys k1 and k2 are called the pre-whitening and post-whitening keys respectively. The extra processing required is negligible.

Note the difficulty now of launching a chosen plaintext attack against the underlying DES cipher.

Triple DES

It might seem like a good idea to double the effective key length of a block cipher system like DES, by simply encrypting the data twice, with two different keys.

If KA and KB are each 56 bits in length, then perhaps the effective key length is 112 bits in length, requiring 2112 encryptions to find both keys by exhaustive search? Its not.

Meet-in-the-middle attack

First obtain some some matching plaintext/ciphertext pairs (known plaintext attack). Three or four will usually do.

Then take the first pair, say P and C.

Compute EK(P) for K = 0 to 256 -1 and store the results in memory.

Compute Dk(C) for k = 0 to 256 -1 and look for a match in memory. If a match is found then K=KA and k=KB (possibly - check with some other known plaintext/ciphertext pairs).

This attack requires at most 257 encrypts/decrypts, and storage for 256 blocks.

In a little more detail….

First step - create a table for W=EK(P) for K = 0 to 256 -1, where P is the first known plaintext

K
W

0
987ac876c7635c1c

1
39171374f78a1282

2
82643725327cf123

….
……

256-1
07652fca8b612732

Next sort this table on the W (sorting is fast). Note that for DES there are more possible W's than K's, so most values of W will cause a null entry….

W
K

0
76275ac8983f7f

1
<null>

2
48937938c27e83

….
……

264-1
<null>

Now start decrypting the Ciphertext C with every possible value for k = 0 to 256 -1. At each step check the decryption for a non-null entry in the above table for W. If such an entry is found, then we have candidates K=KA and k=KB. Check these candidates for correctness against the other known plaintext/ciphertext pair. If it works for all of them than the correct KA and KB have been found with overwhelming probability.

To increase the security of DES use - Triple DES

Effective Key length is 112 bits. Note that if KB =KA then this reduces to simple single-DES with key KA. This means that the same hardware could be used for both.

This idea can be used with any block cipher to double the key space.
Both DESX and triple-DES can be regarded as super-block ciphers, and can be used as such with any of the above mentioned Modes of operation.

P0

C0

K

P1

C1

K

P2

C2

K

IV

P0

C0

K

P1

C1

K

P2

C2

K

IDEA

Key

Key

IDEA

IDEA

P

C

P

IDEA

Key

Key

IDEA

Key

Key

IDEA

P

C

P

P

C

P

Plaintext P

Meet in the middle!

Ciphertext C

KB

KA

E

E

KA

KB

KA

Ciphertext

E

D

E

Plaintext

W

