Public Key Encryption & Signature in Practice

In practise PK methods are relatively time consuming when compared to a symmetric block cipher like AES. 

When encrypting a message m, using RSA for example, m must be less than the 1024-bit modulus n. A larger message could be encrypted by breaking it up into 1024 bit chunks. However it is more efficient to

· Generate a random 128-bit AES key K.
· Encrypt the entire message using the AES in CBC mode
· Use the Public key of the recipient to encrypt K
· Send the encrypted message and the encrypted “session key” to the recipient
The intended receiver then first finds the session key using his private key, and then decrypts the message.

This is much more efficient.

For signature, a large message to be signed could again be broken up into 1024-bit blocks and each signed individually. But the individually signed blocks could be swapped in order by an active attacker, and the message thus changed. So a fixed length (160 bit) Cryptographic Hash of the message H(m) is formed, and only the Hash is signed.

So in practise only one PK operation is required for encryption/decryption/signature or verification.

Identification – the passport of the future?

How can person A identify themselves to person B, whilst not revealing any information which would enable either B or an eavesdropper to subsequently masquerade as A?

Proof of identity might be stored on an unforgeable Smart-Card.

Solution:
Fiat-Shamir Method
The RSA system can be described simply as




e = m3 mod n



m = e1/3 mod n
Therefore the ability to decrypt is equivalent to the ability to extract cube roots mod n. It is easy to take such roots only if the factors of n are known.

Assume a “trusted centre” which generates n = p.q
Each individual’s identity is represented as an ascii string I, which can be treated as a base-256 number.

The trusted centre then calculates 3(I for every user of the system. It then destroys p and q.

Each user is then issued with a Smart Card which contains I, 3(I, and n.

The idea is that to prove identity the user reveals I, and then proves that he/she has knowledge of 3(I , without actually revealing it.

This is sometimes called a Zero-Knowledge proof, as it proves possession of certain knowledge without revealing anything about it (!?)

The protocol

(all arithmetic mod n)

1. Prover shows I to verifier

2. Prover generates random number R, cubes it, and sends R3 to verifier.

3. Verifier tosses a coin and responds Heads or Tails.

4. The prover then

(a) If heads, then sends R. The verifier cubes this to get R3 and compares it with the number received in step 2.

(b) If tails, then sends R.3(I. The verifier cubes this to get I.R3 and compares it with the number sent in step 2, times the I sent in step 1.

If comparisons work, the verifier is satisfied (for now!). However a cheater has a one in two chance of success, so go back to step 2., and do it again, and again until satisfied.

In step 4a the prover is being tested on whether or not it actually knows the cube root of the number sent. If not, it will sooner or later be caught out. However anyone can respond correctly if heads were received every time, as anyone can generate a random number mod n and cube it.

In step 4b however the cheater has a bit of a problem, not knowing 3(I. However if tails were luckily predicted, the cheater could send R3/I in step 2 (a number whose cube root she doesn’t know – gulp), followed by R in step 4b. This passes the comparison check. 

But a cheater must be very lucky! In step 2 a commitment is made which cannot be backed away from. A single wrong guess and the game is up!

Observe that 3(I is only used in the context of R. 3(I. Since R is generated randomly, it is acting as a “One-time-pad” on 3(I, and therefore no matter how many such values are observed, nothing whatsoever is revealed about the secret 3(I.

El Gamal Signature

The El Gamal public key method can also be used for Signature. A variant of this method constitutes the popular International Digital Signature Standard.

A prime p, and suitable generator g are made known to all.

The Signer has a secret key x and a public key y related by





y=gx mod p
To sign a message m, first produce a fixed length digest of it using a hash function such as SHA. Then generate a random number k < p.

The signature consists of 





r = gk mod p




s = (H(m) – x.r).k-1 mod (p-1)

To verify this signature, a possessor of the public key checks that





yr.rs ( gH(m) mod p
This can be checked directly by substitution.

There appears to be no way to forge a signature on a given message without first solving the discrete logarithm problem.

