Factoring Integers

The problem of … resolving composite numbers into their prime factors is one of the most important and useful in all arithmetic …the dignity of science seems to demand that every aid to the solution of such an elegant and celebrated problem be zealously cultivated

K.F. Gauss, Disquisitiones Arithmeticae (1801)

1. Brute Force

Factor n=1234567890

Divide by all primes less than (n.

Factors are:- 2,3,3,5,3607,3803

Now consider this method on a 40-digit number n, which is the product of two 20 digit prime factors.

By the Prime Number Theorem there are approximately n/loge n primes less than n. Therefore there are about 2.1018 primes less than (n.

If division by one prime can be accomplished in 1nano-second, then the factors will be found in around 2.109 seconds, that is in about 100 years.

There has got to be a better way.

2. Pollard (Algorithm

This algorithm uses a random number generator, exploits the Birthday paradox and uses Floyd’s cycle-finding algorithm.

Let n be the number to be factored. Consider the numbers generated by the iteration

x ((x2 + 1) mod n
starting from x = 2.

Example: n = 65

Iteration
x mod 65

x mod 5

x mod 13

1

2

2

2

2

5

0

5

3

26

1

0

4

27

2

1

5

15

0

2

6

31

1

5

7

52

2

0

8

40

0

1

Note the quick appearance of cycles in x mod 5 and x mod 13.

These cycles could be of length 5 for x mod 5, as the numbers 0,1,2,3,4 could have appeared (in some order) before a repeat was inevitable. Such a maximal length cycle is however unlikely, as a consequence of the Birthday Paradox.

When a cycle repeats, the associated factor can be found as the GCD of the difference between the corresponding x mod 65 values, and 65.

So for example 5=GCD(27-2,65).

But how to find a cycle?

Floyd’s Cycle Finding Algorithm will always eventually find the cycle, and the factor, by comparing the i-th value of x mod n with the 2i-th value.

#include <iostream.h>

#include "algor.h"

void main()

{

 Big x,y,n,p;

 cin >> n; // get number to be factored

 x=2;

 y=5;

 while ((p=gcd(y-x,n))==1)

 { // y is the 2i-th value, x is the i-th

 y=(y*y+1)%n;

 y=(y*y+1)%n;

 x=(x*x+1)%n;

 }

 cout << p; // outputs a factor

}

3. Pollard (p-1) method

2p-1 (1 mod p

(Fermat)

· 2p-1 –1 is exactly divisible by p
· p = GCD(2p-1-1,n)

Assume that we can generate Q which is a multiple of (p-1), then

2Q (1 mod p
· p = GCD(2Q –1,n)

But how to generate Q?

Easy. Set Q = 2.3.4.5.7.8.9 ……

If p-1 has only small factors, this method will quickly find p.

2Q can be calculated quickly mod n.

Example: n = 10000000000000000000000000000000009

With Q = 2.3.4.5.7.8.9……….1499

Pollard’s (p-1) method quickly finds the factor

p = 2,532,184,185,301

Note that p-1 = 2.2.3.5.5.7.11.17.53.89.1367

4. The Quadratic Sieve

If we can find an x and y such that

x2 (y2 mod n
Then it may be possible to find factors using

(x2 - y2) ((x – y)(x + y) (0 mod n
For example

372 (72 mod 55

Factor 5
= GCD(37-7,55)

Factor 11
= GCD(37+7,55)

Values of x and y can be found by systematically generating small quadratic residues, factoring them, and combining the results.

Example: n = 77

Choose 13,21,37 and 42 at random

15 = 132 mod 77

56 = 212 mod 77

60 = 372 mod 77

70 = 422 mod 77

Now

15 = 3.5

56 = 2.2.2.7

60 = 2.2.3.5

70 = 2.5.7

Observe that

15.60 = 2.2.3.3.5.5 = (2.3.5)2 = 302
· 302 ((13.37)2 mod 77

· 302 (192 mod 77

and
11
= GCD(30-19,77)

7 7
= GCD(30+19,77)

The trick is to try and combine congruences so that the combination is a perfect square, that is it has even numbers of each small prime factor.

The “combination of congruences” can be carried out systematically using gaussian elimination modulo 2.

2
3
5
7

15
0
1
1
0

56
1
0
0
1

60
0
1
1
0

70
1
0
1
1

The problem is to combine rows in such a way as to create a row of zeros.

In this case simply add rows 1 & 3

