RSA Public key Cryptography

This is in many ways the jewel in the crown of number theoretic cryptography. The idea here (envisaged first by Diffie and Hellman) was for an encryption system with a public encryption key and a private decryption key. In fact the idea is not outlandish at all- it is the precise analogue of a padlock. Anyone can close a padlock - only the possessor of the key can open it.

If you want to send me a secret, I send you an empty box and my open padlock. You pop the secret in the box, put on the padlock and close it, and send it back to me. I open it with my padlock key. As a manual way of transmitting secrets, this is perfectly viable.

A padlock is a kind of one-way function - if you don’t have the key. Anyone can squeeze it shut, but its virtually impossible to open. However possession of the key acts as a kind of trap-door that springs it open instantly.

See what I’m getting at? A trap-door one-way function is what’s needed for Public Key cryptography, and exponentiation modulo a carefully constructed composite number is ideal for the purpose.

First I create my own padlock by generating two 512 bit prime numbers p and q. I multiply them together to create a 1024 bit n. Now n is my padlock, p and q together are my key.

(Note here that the padlock analogy breaks down in one significant way - it costs nothing to make and distribute multiple copies of n).

To send me a message m, calculate and transmit m3 mod n. That’s the message padlocked into a box. Only I, knowing p and q, can spring the lock, by application of the secret “cube-rooting” exponent, calculated as 3-1 mod (p-1)(q-1). Note that the message m could be itself a key, so RSA can be used for secure key exchange as well.

A couple of important points about the practical implementation of RSA

· The primes p and q should be formed so that p-1 and q-1 are not smooth, that is it does not have only small prime factors. One (perhaps extreme) solution would be to make them both safe primes. This prevents a number of attacks. In the past quite elaborate procedures were proposed for prime generation, both to make factorisation of the modulus as difficult as possible and to prevent various attacks. It was suggested at one time that p+1 and q+1 should each have a large factor, as should [(p-1)/2]-1 and [(q-1)/2]-1. These requirements are now known to be spurious. Furthermore restrictions of this type introduce another danger, as if we are too picky about the primes we choose, then an opponent, knowing our method, has only a restricted set of primes to search among. In fact purely random primes are probably as good as any, but a quick check that p-1 and q-1 are not smooth is still recommended. For example if they can be fully factored by trial division, then p and q are OK.

· The choice of 3 as an encryption exponent is not actually ideal, and causes a few problems. For a start it is important that the “cubed” message suffers modular reduction mod n, otherwise it may be recovered by simple integer techniques. For example 23 mod n is 8, and the cube root of 8 is trivially 2. Also if the same message is broadcast to three or more correspondents, then an eavesdropper can reconstruct the actual value of m3 (not mod anything) by application of the Chinese Remainder Theorem, and again find its integer cube root, the message m. However any other (odd) encryption exponent may be used. A small prime is good as it is more likely to have an inverse mod (p-1)(q-1). The numbers 257 and 65537 are popular choices – they are prime, big enough to avoid these attacks, and have a binary representation with only two 1’s in it - which makes exponentiation more efficient.

· The same message will always encrypt to the same ciphertext. This actually leaks information - if someone observes the same ciphertext on two different days, then they may not know what the message is, but they do know that it is the same message as before. There are of course obvious ways of disguising this - one could for example pad the message with random data.

Program 3.2 - RSA

This program generates a prime pair and their product, and then encrypts and decrypts a short “message”, using the RSA method. Note the use of the Chinese remainder theorem to speed up decryption. Decryption is of course carried out by the entity that knows the factors p and q, so this knowledge can be used to advantage.

#include <iostream.h>

#include <stdlib.h>

#include "algor.h"

#define PBITS 14 // number of bits in p and q

void main()

{

 Big p,q,n,phi,m,e,d,c,rp,rq;

// seed random number generator

 srand(3);

 e=257; // encryption exponent

// generate two random primes

 do

 {

 p=safe_prime(PBITS);

 q=safe_prime(PBITS);

 n=p*q;

 phi=(p-1)*(q-1);

 } while (gcd(e,phi)!=1);

 d=inverse(e,phi);

// good parameters found - encrypt message

 cout << "n= " << n << endl;

 m=42;

 cout << "Plaintext = " << m << endl;

 c=pow(m,e,n);

 cout << "Ciphertext = " << c << endl;

// Decrypt using CRT

 rp=pow(c%p,d%(p-1),p);

 rq=pow(c%q,d%(q-1),q);

 m=crt(rp,p,rq,q);

 cout << "Message = " << m << endl;

}

Digital Signature, or Digital Sealing

The RSA system allows the concept of a Digital Signature.
Assume a scenario where Alice & Bob are in communication.

Now for Alice to ‘sign’ a plaintext, she first ‘decrypts’ or signs it with her own private key, and then encrypts it with the Bob’s public key,.

[image: image6.wmf]p

x

x

p

p

m

p

m

mod

1

mod

]

3

/

)

1

)

1

(

2

[(

-

+

-

=

At the other end Bob reconstructs the plaintext by first decrypting with his private key, hence stripping off the encryption, and then “encrypting” with Alice’s public key to strip off the signature. (This is also called signature verification.)

[image: image2.wmf]P

n

n

C

a

b

=

mod

]

mod

[

3

3

1

If P makes sense, then only Alice could have sent it, as only Alice knows her private decryption key.

Note that a public key can be used for both encryption and the verification of digital signature.

The private key can be used for both decryption and digital signature.

[image: image1.wmf]b

a

n

n

P

C

mod

]

mod

[

3

3

1

=

[image: image3.wmf]p

x

x

p

p

m

p

m

mod

1

mod

]

4

/

)

1

[(

-

+

=

[image: image4.wmf]p

x

x

p

p

m

p

m

mod

1

mod

]

3

/

)

1

)

1

(

2

[(

-

+

-

=

[image: image5.wmf]p

x

x

p

p

m

p

m

mod

1

mod

]

4

/

)

1

[(

-

+

=

However this is not quite as nice as it seems. How does Alice know that Paddy hasn’t simply given me his public key, for which of course he has the private key, and pretended that it is Bob’s? These keys are large numbers that are difficult to remember. There is a need to securely associate a Public key with its owner.

This is where Certification comes in. A certificate binds a public key to an individual. A Trusted Third Party provides a certificate to each individual involved. This consists of the users identity, other relevant information, and their public key. The complete certificate is then in turn digitally signed by the Trusted Third party, using their own public/private key pair. The TTP’s public key is “well-known” to all parties.

So now to send you a message, I first sign the message with my own private key. I then access your certificate from a public directory. I check the validity of the certificate using the TTPs public key to verify the signature. Then I encrypt the message using your public key as extracted from the certificate. Now you know it must have come from me, and authentication is restored.

Now I can access Bob’s public key in such a way that I can trust that it really is Bob’s public key. Further more I am also in a position to verify his seal, or digital signature.

X.509 specifies a standard for certificate format.

Rabin’s method

This is a variant of RSA which uses the exponent 2. Unfortunately it has a fatal Achilles heel - but nonetheless it is worthy of study. A message m is encrypted by calculating m2 mod n, for n = pq, where p and q are typically 512 bit prime numbers.

The obvious disadvantage is that a ciphertext will have in general four square roots, only one of which will correspond to the original message. But if this were the only problem, it would not be insurmountable.

The good news is that cracking a cryptosystem based on this idea is provably as difficult as factoring the modulus, because, as we have demonstrated, the ability to extract a square root of an arbitrary number mod n can be exploited to factor n. This is not the case with classic RSA - there may be a way of extracting cube or higher roots without factoring the modulus (although this is thought unlikely). Nevertheless on the face of it we can be more confident with the security of this approach, because of its proven equivalence to the difficulty of factoring.

The bad news is - it has a fatal flaw. The fact is that simply making use of the decryption facility can reveal the factors of n. This is not true of RSA - I could let an enemy use my decryption facility to extract cube roots to their hearts content. This could not be exploited to factor my modulus. However such access to a square-rooting facility allows just that. This is called a chosen-ciphertext attack. Simply encrypt any random message r, by squaring it mod n and present it for decryption. Somehow get hold of the decrypt, and if it is not (r, then out pop the factors.

El Gamal Public Key Cryptography

This PK system is a little more elaborate than RSA. It is based on the hardness of the discrete logarithm problem, rather than on integer factorisation. It can be looked on as an extension of the Diffie-Hellman key exchange algorithm.

Using the same p as used for Diffie-Hellman I generate a 1024 bit public key y as

y = 3x mod p
I keep the 160 bit number x secret. To send me a message m, you generate a random 160 bit number k, and perform the following calculations:-

c1 = 3k mod p

c2 = m.yk mod p
The data {c1,c2} is the ciphertext. The message m is effectively disguised in c2 by being multiplied by a number that an outsider cannot determine. However I, knowing x, can recover m as

m = c2/c1x mod p
This is easily verified by substituting for c1 and c2 from above.

An outsider must, it appears, solve the discrete logarithm problem in order to break this system.

Observe that the ciphertext is twice the size of the message - this is undoubtedly a disadvantage. But every cloud has a silver lining. Using this method the same message will not now encrypt to the same ciphertext, assuming it is associated each time with a different random value k.

#include <iostream.h>

#include <stdlib.h>

#include "algor.h"

#define PBITS 30

#define EBITS 12

void main()

{

 Big p,c1,c2,m,k,pub,priv;

// seed random number generator

 srand(4);

// generate PBITS-bit safe prime

 p=safe_prime(PBITS);

 cout << "Prime = " << p << endl;

// generate public/private key pair

 priv=rand(EBITS,2);

 pub=pow(3,priv,p);

 m=42;

// encrypt message m

 k=rand(EBITS,2);

 c1=pow(3,k,p);

 c2=modmult(m,pow(pub,k,p),p);

// decrypt message

 m=modmult(c2,inverse(pow(c1,priv,p),p),p);

 cout << "message= " << m << endl;

}

An alternative approach, which can also be used with the Diffie-Hellman key exchange, is to use instead of a primitive root, a generator g of a large sub-group of order q, where q is a 160-bit prime that divides p-1. Such a g can be easily found, as r(p-1)/q mod p, assuming r is a known primitive root. This seems to be just as strong (although p is no longer “safe”). The modular inversion can be profitably avoided in this case by decrypting m as

m = c2.c1 q-x mod p

#include <iostream.h>

#include <stdlib.h>

#include "algor.h"

#define QBITS 12

#define PBITS 30

void main()

{

 Big p,q,m,t,g,c1,c2,priv,pub,k;

// seed random number generator

 srand(5);

// generate QBITS bit prime q

 q=rand(QBITS,2);

 while (!prime(q)) q++;

 cout << "sub-prime q= " << q << endl;

// find PBITS bit prime p = 2*m*q+1

 t=pow(2,PBITS)/(2*q);

 do

 {

 for (;;)

 {

 m=rand(t);

 p=2*m*q+1;

 if (prime(p)) break;

 }

 } while (digits(p,2)!=PBITS);

 cout << "prime p= " << p << endl;

// get subgroup generator g

 do { /* find primitive root t */

 t=rand(p-1);

 g=pow(t,(p-1)/q,p);

 } while (g==1);

 cout << "sub-group generator g= " << g << endl;

// generate public/private key pair

 priv=rand(q);

 pub=pow(g,priv,p);

 cout << "Private key = " << priv << " Public Key = " << pub << endl;

 m=42;

// encrypt message m

 k=rand(q);

 c1=pow(g,k,p);

 c2=modmult(m,pow(pub,k,p),p);

// decrypt message

 m=modmult(c2,pow(c1,q-priv,p),p);

 cout << "message= " << m << endl;

}

Goldwasser-Micali

The difficulty of establishing quadratic residuosity with respect to a number n=pq forms the basis of this public key method.

I generate n from two secret primes p and q, just as for the RSA method. I make n public as well as a random quadratic non-residue y of n, constructed such that (y/p) = (y/q) = -1. A QNR of this form is sometimes called a psuedo QR, as (y/n) evaluates as +1.

To send me a message, break it down into individual bits, m0,m1,m2, etc. Encrypt the i-th bit as follows:-

Generate a random xi < n

If mi = 0 send me ci = xi2 mod n.

If mi = 1 send me ci = y.xi2 mod n.

I alone can figure out the value of each bit, by checking whether or not the received value is a truly a QR, by evaluating (ci/p). An outsider can of course evaluate (ci/n), but this will always be +1, and so conveys no information.

Two points need to be made:-

· This is not a practicable Public Key system, as, for typical security parameters each message bit generates perhaps 1024 bits of ciphertext. This is quite unacceptable.

· This is a probabilistic Public Key method. The same message will encrypt differently each time, due to the random xi values associated with each bit. This is an advantage with respect to RSA.

Although not a practicable system, it does illustrate the potential of the exploiting quadratic residuosity.

Blum-Blum-Shub random number generator

What are the ideal properties of a pseudo-random number generator? In the past various mathematical formulae have been suggested which appear to generate random-looking numbers, and which have then been subjected to a battery of arcane statistical tests, with names like the Poker test, the Chi-squared test, the Kolmogorov-Smirnov test, etc.

In fact there is a way to short-circuit all of that. A good random number generator that will pass all conceivable statistical tests need have just one property – it should be unpredictable.

Consider now the simple iteration

x (x2 mod n
where n is the product of two 512-bit primes p and q, both congruent to 3 mod 4. In this case there is only one of the four square roots of a quadratic residue that is itself a quadratic residue – the principle square root. So the series of values generated by this iteration are uniquely defined in both directions – to the right by squaring mod n, to the left by finding the unique principal square root. In essence this iteration takes us on a random tour through the quadratic residues. Consider now the sequence of bits generated by examining the least significant bit of the value of x after each iteration, which might be, for example

0 1 1 0 1 0 1 1 0 0 0 1 0 1 1 ……

Consider the predictability of this sequence, looked at initially backwards from right to left. If I were able to predict the next bit to the left, then I would be predicting the least significant bit of the square root of the current value of x. And if I could do that then I could factor n. Therefore the unpredictability of the bit sequence is nicely predicated on the difficulty of factoring n. Put another way, if such bits could be predicted with accuracy any better than 50-50, then it follows that factoring a 1024-bit number is easy. But it isn’t so, well, draw your own conclusions. Unpredictability to the right depends on not being able to guess the initial value of x, and if this is an unknown 1024-bit value then this will clearly not be possible.

This random number generator obviously comes very close to the ideal of that required by a one-time pad. Generate two suitable primes p and q and multiply them to obtain n. Then destroy p and q - ideally this could all be done inside a computer program which simply outputs n so that p and q are never seen. To create a pseudo-one-time pad, distribute an initial value of x, perhaps using the Diffie-Hellman method. Then XOR the least significant bit of x after each iteration, with the next bit of the message. Breaking such a system is provably equivalent to factoring a 1024-bit number, a task considered at present to be completely computationally infeasible.

There are two potential shortcomings. First the method is rather inefficient – each random bit produced requires a modular squaring of a 1024-bit number. In fact it has been proved that up to lg (lg n) least significant bits can be extracted simultaneously for use, without weakening the method. So if n is 1024 bits, then the 10 least significant bits can be used after each iteration – a 1000% improvement. In fact it has been conjectured that up to half the bits can be safely used – but if we do so we loose our proof of equivalence with factoring, which is the whole point of the method.

The second issue is that of cycle length. All deterministic pseudo-random number generators start to repeat eventually. However it turns out that if the values of x generated by repeated modular squaring mod n start to cycle, then this cycling could be easily exploited to factor n. So, based on our working assumption that factoring is hard, we can further assume that cycling will never occur.

Program 3.5 – Blum-Blum-Shub pseudo random number generator

#include <iostream.h>

#include <stdlib.h>

#include "algor.h"

#define PBITS 14

void main()

{

 Big x,p,q,n;

// seed random number generator

 srand(5);

// generate two PBITS-bit safe primes

 p=safe_prime(PBITS);

 q=safe_prime(PBITS);

 n=p*q;

 p=0; q=0; // destroy p and q

 x=rand(2*PBITS,2);

 for (int i=0;i<70;i++)

 {

 x=modmult(x,x,n);

 cout << (x&1); // output least significant bit

 }

}

Blum-Goldwasser PK system

The Blum-Blum-Shub cryptographically strong number random number generator can be converted into a Public Key Method. The initial set-up is similar to RSA. A public key n is formed as the product of two primes p and q, this time both congruent to 3 mod 4. The composite n constitutes the public key, and the two prime factors are the private key. The idea is now quite simple. To send me a message, generate a random initial value for x, and start squaring it mod my public key n. Use the resulting BBS generator as a one-time pad to encrypt the message. Then send me

· The encrypted message

· The length of the message m
· The final value of xm, after one last squaring mod n.

To reconstruct the message, I can use my secret knowledge of p and q to “rewind” the one time-pad to its beginning, and run it again over the ciphertext, thus revealing the message. Specifically I can use my knowledge of p and q to calculate repeated square roots of the final value of x, until it has the same value it had initially. I can now run the pad forward again to decrypt the message.

If the message consisted of m bits (assuming only the least significant bit of x is being used for encryption), then I must rewind the generator back m steps. One way would be to find m square roots, one after the other. But in fact I can jump straight back to the beginning in just one step, and as I know p and q the Chinese remainder theorem is relevant.

Calculate

Next calculate xq in a similar fashion, and combine the values of xp and xq using the CRT. The value obtained is the initial value of x used to encrypt the message. After this complex initial calculation, things proceed very much as for encryption. The pad is run forward again over the ciphertext, in effect stripping off the encryption and revealing the original message.

As a PK system, this method is in many ways superior to RSA. In particular it is far more efficient in terms of bits encrypted per second, particularly if used to encrypt a very long message. It is, like the impractical Goldwasser-Micali method a naturally probabilistic PK system, as the same message will not encrypt to the same ciphertext, due to the encryptor’s random initial choice of x.

There is however, sadly, a fly in the ointment. Since the decrypting process now has the capacity to calculate square roots mod n, it can be abused to reveal the factors of n – using basically the same chosen ciphertext attack that rendered the Rabin method vulnerable. Note that this attack is possible even though the decrypting process might reveal only a few bits of a square roots at a time – recall that the ability to consistently determine even a bit of a square root can, by repeated invocation, be used to find the full root.

So it turns out again that a method based on the difficulty of extracting square roots and hence equivalent to factoring the modulus, falls again to a chosen ciphertext attack, which turns this apparent strength into a weakness.

We can however fix things, after a fashion. Choose p and q now to be congruent to 2 mod 3, and replace the basic BBS iteration with

x (x3 mod n
This works just as well, except that its security now depends, not on the difficulty of factoring, but rather on an instance of the weaker RSA assumption, that is the difficulty of extracting cube roots mod n without knowledge of the factors of n. Again the lg(lg n) least significant bits are simultaneously secure (under this assumption).

Encryption proceeds as before, using this new iteration. To rewind this generator prior to decryption calculate

And similarly xq.
Combining these values via the CRT gives the same value of x as could have been obtained (less efficiently) by serially extracting m cube roots of the final value of x that comes with the encrypted message.

Now we finally have a perfectly viable probabilistic PK system. It hasn’t proved as popular as RSA for a number of reasons:-

· Its improved efficiency is not relevant in most applications, where only only a short message is to be encrypted.

· It encrypts as a stream cipher using simple XOR. This is vulnerable to a substitution attack. Classic RSA encrypts as a block cipher.

#include <iostream.h>

#include <stdlib.h>

#include "algor.h"

#define PBITS 14

char message[]="This is a test of the Blum-Goldwasser probabalistic PK system";

void main()

{

 int i,m;

 Big x,p,q,n,xp,xq,e;

// seed random number generator

 srand(54);

// generate two PBITS-bit safe primes

 p=safe_prime(PBITS);

 q=safe_prime(PBITS);

 n=p*q;

// encrypt message

 x=rand(PBITS,2); // random x

 for (m=0;message[m]!=0;m++)

 {

 x=pow(x,3,n);

 message[m]^=(char)x; // XOR with least

 // significant byte of x

 }

 cout << "Ciphertext= \n" << message << endl;

 x=pow(x,3,n); // once more

// decrypt message

// first recover pad

 e=pow((2*(p-1)+1)/3,m+1,p-1);

 xp=pow(x,e,p);

 e=pow((2*(q-1)+1)/3,m+1,q-1);

 xq=pow(x,e,q);

 x=crt(xp,p,xq,q); // combine with CRT

 for (i=0;i<m;i++)

 {

 x=pow(x,3,n);

 message[i]^=(char)x; // XOR with least

 // significant byte of x

 }

 cout << "Message= \n" << message << endl;

}

�

�

…. and applies Bob’s Public key

Alice Signs message ….

Message

This certifies Bob:-

Name: Bob Ratcliff

Address: 4 Fred West Terrace

Height: 6’ 7

Hair Colour: Brown

This is his public key:-

Bob’s

To Bob

Seal of Trusted Authority

� This flaw does not affect the security of the BBS generator, for which of course no decrypting process exists. In that case, since p and q have been destroyed, any technique that recovers them constitutes a bone fide factoring algorithm.

_973582054.unknown

_973582119.unknown

