Finding primes

If a randomly generated number p satisfies Fermat’s theorem, that is yp-1 mod p =1, for any y in the range 1<y<p, then this is a very strong indication that p is prime. However there are numbers that fool this test for certain values of y, and there are some that fool it for every value of y. 

A better indication can be found by examining the table of powers mod 11 and mod 13. Consider the sequence of 1’s 
y(p-1) mod p,   y(p-1)/2  mod p , y(p-1)/4 mod p,  etc, 

that terminates when the next value becomes -1, or when (p-1) is no longer exactly divisible by the next power of 2. For example consider 10 as a "witness" for the primality of 13. 

1012 mod 13 = 1

106 mod 13 = 1

103 mod 13 = -1

So 13 appears to be prime. 

A test based on detection of this pattern is much less likely to fail.  In fact the chances of it failing (by giving a false positive) for any particular witness  y is less than ¼. Repeating the test r  times  with different values of y reduces the chances of failure to (¼ )r. So by repeating it often enough we can be as certain as we like about the primality of the number under test.

This is the Miller-Rabin probabilistic primality test. It is actually much misunderstood. The figure of ¼ is an extreme worst case. In fact Kim & Pomerance have shown that for a 100-digit prime, this figure can be reduced to approximately .00000003. And it gets smaller as the numbers get bigger. This is because the pseudo-primes that fool tests like these thin out much more quickly than the real primes.

An alternative way of generating large provable primes is to make use of various results that allow a larger proven prime to be created from a smaller one. So starting from a small known prime, like 13, a prime of any size can eventually be created. 

Cryptographic significance - prime modulus

Refer back now to the tables of 2x mod 11 and x3 mod 11. Both are of particular cryptographic interest, as they effect a nice permutation of the values of  x. Visualising x as an input to a box that outputs the value of either of these functions, then such a box can be considered as substituting a different value for x. In classic cryptography such a device is called an S-Box, or substitution box. But these S-Boxes have a nice mathematical structure. 

How difficult is it to reverse back through these boxes? Well the calculation of cube roots mod p turned out to be quite easy, as it is not difficult to find the inverse of 3 mod ((p).  How difficult is it to find x, given the value of gx mod p (assuming g is a primitive root, and that g and p are known)? This is known as the discrete logarithm problem, and it appears to be incredibly difficult! This function is indeed an excellent example of a one-way function. Relatively easy to calculate in one direction, virtually impossible in the other.

If m=log2(p) - in other words m is the number of bits in p, then the best algorithm for the calculation of y=gx mod p is O(m3) - polynomial time. The best algorithm for the discrete logarithm problem is (very roughly) O(2(m) - exponential time.

Of course the one way function only becomes really one-way when the numbers involved get much bigger, and we are no longer in a position to simply generate a look-up table to find the answers. Indeed the actual computational complexity of the various calculations we have considered, are somewhat non-intuitive. As we shall see, the algorithms for the calculation of modular inverses and exponentiations are surprisingly fast. To get a feel for a “real” cryptographic calculation, ponder the following calculation of y=2x mod p, where

x=989694019987598116925802812178423698521489258897

p=155315526351482395991155996351231807220169644828378937433223838972232518351958838087073321845624756550146945246003790108045940383194773439496051917019892370102341378990113959561895891019716873290512815434724157588460613638202017020672756091067223336194394910765309830876066246480156617492164140095427773547319

The answer is:-

136760497167960189824727153679471361829626051112090929573692842225859921311161696240788693312811781202827036144690952890913741242081482177765302704517031449761169405649240345737720871368883398870267575497320447800544520840294209049355696543649584765775977238456919963198656591882812892725472779570614012054259
When carrying out this calculation on a modern workstation, the answer comes back virtually instantly. However the “reverse” calculation, known as the discrete logarithm problem, is completely infeasible for numbers of this size.

One caveat however: The least significant bits (only) of a discrete logarithm can sometimes be found easily, without solving the discrete logarithm problem.

Fact
Given a prime p, a primitive root g, and the value of y=gx mod p, then if y is a QR, x is even, otherwise x is odd.

Example:- 

9=26 mod 11. The fact that 9 is a quadratic residue can be confirmed by calculating 95 mod 11 = 1, so we know x is even. The test for quadratic residuosity is O(m3) - which is fast even for large p.

If p is congruent to 1 mod 4, then more bits will be vulnerable. A safe prime is always best.

For Cryptographic purposes it is best that g is not a primitive root (although early texts recommended this). It is in fact best if g is a generator of a prime-order sub-group.

Recall that for a prime p the candidate orders are the divisors of p-1.

Fact
If for a prime p, p-1 has a prime factor q, then a generator g of the sub-group of size q can be found by generating random r < p-1 until g=r(p-1)/q mod p is not equal to 1. (It is easy to see that such a number raised to the power of q mod p will be 1).

This fact can be used to find a prime order generator very quickly for a non-safe prime. However the generator found will not be small (like 2 or 3), and hence will be somewhat more cumbersome to use. 

Example

For p=29, p-1 has a prime factor 7, then a generator of the sub-group of size 7 can be found as follows:-

Gnenerate r=3 at random. Then 34 mod 29 = 81 mod 29 = 23. So g =23 is a generator of the sub-group of order 7.

x
23x mod 29

1 23

2 7

3 16

4 20

5 25

6 24

7 1

8 23 etc!

Composite Modulus

Now let us look at modular arithmetic with respect to a composite modulus, specifically a modulus n = p.q, the product of two prime numbers. The first thing to notice is that the positive integers less than n do not form a multiplicative group. This is because not every number in the range 1-n has a unique multiplicative inverse. Specifically the multiples of p and q, since they are not co-prime to n, do not have an inverse. 

What is the value of the Euler Totient function ((n)? It is as before the number of numbers less than n that are co-prime to n. That is the number of numbers less than n minus the multiples of p and minus the multiples of q. So ((n) = (p.q-1) -(p-1)-(q-1) = (p-1)(q-1).

Thanks to Euler’s theorem we know that y((n) mod n =1. Therefore numbers that appear in the exponent, like x in the context of yx mod pq, can always be reduced mod (p-1)(q-1).
x

3x mod 35
1 3

2 9

3 27

4 11

5 33

6 29

7 17

8 16

9 13

10 4

11 12

12 1

13 3

14 9

15 27

16 11

17 33

18 29

19 17

20 16

21 13

22 4

23 12

24 1

25 3…etc!

Consider now the following riddle: My number, less than 15,  leaves a remainder of 2 when divided by 3, a remainder of 4 when divided by 5. What is my number?

The answer is 14, which is the only number in the range 1-14 to satisfy the conditions. In general the value of a number mod pq can be uniquely determined from its remainder mod p and its remainder mod q. This is a consequence of the Chinese Remainder Theorem (CRT). Furthermore there is a highly efficient Chinese Remainder Theorem Algorithm that quickly reconstructs a number mod n given its remainders mod p and mod q. (In fact the idea can be extended to finding the remainder of a number modulo the product of any number of co-prime moduli, given each individual remainder.)

In general the smart way to work modulo a composite number, is to work instead modulo each of its factors (which are smaller numbers), and to finally combine the results using the Chinese Remainder theorem algorithm.

How can we find a square root mod n? Of course only numbers that are quadratic residues mod n have any square roots, and there are many numbers (QNRs) which will not have any square roots mod n. 

Fact
A number w will be a quadratic residue mod pq, only if it is a QR mod both p and q, that is  if (w/p) = (w/q) = +1.

Calculating the Jacobi symbol (w/n) does not resolve the question of quadratic residuosity for a composite n. Recall that (w/n) = (w/p).(w/q). So if (w/n) evaluates as -1 we can be sure that w is not a quadratic residue mod n. However if it evaluates as +1, then it might be a QR if (w/p) = (w/q) = +1, or it might not be if (w/p) = (w/q) = -1. Each possibility is equally likely.

Anyway assuming that the number whose square root is sought is a QR, then the best way is to first find the square roots mod p and mod q, and combine the results using the CRT. Recall that a QR has two square roots mod  a prime. 

For example, find the square roots of 3 mod 143, where 143=11*13. 

First we determine the two values of (3 mod 11, which are 5 and 6. Next find (3 mod 13, which are 4 and 9. Now combine these answers using the CRT algorithm. But there are four ways of doing this:-

Combine 5 mod 11 with 4 mod 13 to give 82 mod 143. 

Combine 6 mod 11 with 9 mod 13 to give 61 mod 143

Combine 5 mod 11 with 9 mod 13 to give 126 mod 143

Combine 6 mod 11 with 4 mod 13 to give 17 mod 143

Check for example 17*17=289 ( 3 mod 143

Therefore there are four square roots of 3 mod 143, members of the set {82,61,126 and 17}. These can be considered as the two pairs {61,-61} and {17,-17}. 

Interestingly knowledge of two square roots of any number, one from each pair, allows the modulus to be factored! For example if we know of 61 and 17, then we can find 11 as gcd(61-17,143) and 13 as gcd(61+17,143).

This will always be the case. If an x and y can be found such that x2 ( y2 mod n, and x ( ( y, then x2-y2 mod n =0, or (x+y)(x-y) mod n =0. Since neither (x+y) or (x-y) is 0 mod n, this implies that gcd(x+y,n) will reveal one factor, and gcd(x-y,n) the other.

The implication of this is that

Fact
The ability to extract square roots mod n, implies the ability to factor n. 

The following will turn out to be useful:-

Fact
If both p and q are congruent to 3 mod 4, then only one of the four square roots mod pq is itself a QR. This is called the principle square root.

In these circumstances the principle root square of a QR x is that obtained by combining via the CRT the two values +x(p+1)/4 mod p,  and  +x(q+1)/4 mod q .

Imagine you were in possession of a magical square-rooting box. Then simply generate a number of your own choosing and square it. Present it to the box, which supplies an answer. Now the chances are 50-50 that the returned value will be from the “other” pair, and hence the factors obtained. Of course the box doesn’t know which of the square roots you originally started with, so it can’t conspire to give you back plus or minus the same one.

In fact we can go further. If you had a simpler magic box that could inform you only whether the last bit of the principle square root was a 0 or a 1, then by asking the box a series of questions, the full square root could be established. And it is possible to go further still:-

Fact
The ability to extract any information whatsoever about the least significant bit of the principle square root mod n, implies the ability to factor n.

So if you predict the least significant bit of the principle square root with anything better than 50% accuracy, such a talent could be exploited to factor n. 

Now we will again turn our attention to the extraction of cube roots mod n (n=pq). The same method used to extract cube roots mod p can be applied in this case. The cube rooting exponent is the inverse of 3 mod ((n), that is 3-1 mod (p-1)(q-1). Of course if this is to work 3 must have no factors in common with (p-1)(q-1). 

However if it doesn’t, then every number in the range from 1 to n-1 has a unique cube root mod n.

x
x3 mod 55

x
x3 mod 55
1 1


28
7

2 8


29
24

3 27


30
50

4 9


31
36

5 15


32
43

6 51


33
22

7 13


34
34

8 17


35
30

9 14


36
16

10 10


37
53

11 11


38
37

12 23


39
29

13 52


40
35

14 49


41
6

15 20


42
3

16 26


43
32

17 18


44
44

18 2


45
45

19 39


46
41

20 25


47
38


21 21


48
42


22 33


49
4

23 12


50
40


24 19


51
46

25 5


52
28

26 31


53
47

27 48
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