Cryptography CA416 - Reading List

Smart

Introduction to Cryptography

McGraw-Hill

ISBN - 0077099877
Schneier, Bruce

Applied Cryptography

Wiley - 005.82

Stinson, Doug

Cryptography, Theory and Practice

CRC Press – 005.82

Menezes et al

Handbook of Applied Cryptography

CRC Press - 005.82

Available free from http://cacr.math.uwaterloo.ca/hac
McCormac John

European Scrambling Systems

Waterford University Press

Hans Reisel

Prime Numbers and Factorisation

Birkhauser - 512.7

Proceeedings Crypto, Eurocrypt, AusCrypt, AsiaCrypt
1986-1998

Springer-Verlag - 005.82

Lots of other books shelved at 005.82/512.7

+ lots of other books shelved at 005.82/512.7
Cryptology

The classic scenario:-

Where:-

P = Plaintext

C = Ciphertext

E = Encryption process

D = Decryption process

K = Key

Cryptology = Cryptography + Cryptanalysis

Cryptography – Devising Codes

Cryptanalysis – Breaking Codes

The Cryptanalyst works with one of

· The Ciphertext-only problem – the hardest

· The Known Plaintext problem, where some matching plaintext/ciphertext is available

· Chosen Plaintext problem, where plaintext of the cryptanalyst’s choosing can be inserted into the encryption process.

Perfect Secure Communications – The One-Time Pad

The following mechanism is provably secure, even if infinite computational resources are available to the Cryptanalyist.

If the streams of random bytes are:

· Identical

· Truly Random

Then the cipher text is also truly random. This scheme is unbreakable.

Proof

Assume the intruder can read the ciphertext byte

C = 10010011

This byte could have resulted from

C = 00000000 (10010011

Or it could have resulted from

C = 10101010 (00111001

In fact this ciphertext byte could correspond to any P. Each P is as likely as any other. The intruder can do no better than simply guess.

However there are severe practical difficulties with implementing the One-Time Pad. For one the “Key” is the stream of random bytes, which must be identical on both sides of the communications. So it must be as big as the plaintext.

It is a fatal error to attempt to re-use an OTP.

Block Ciphers

For practical purposes a block cipher is preferred. It typically encrypts a 64 (or 128) bit block of data into the same size of ciphertext, using a 128-bit (typical)) key.

Under control of the Key, the plaintext is substituted by a Ciphertext. A block cipher could in theory be implemented as a huge look up table, one table for each possible Key.

For example:-

Key=0x0000000000000000

 Plaintext

Ciphertext

 0000000000000000

9F84679674981AEF

 0000000000000001

7FE6598E8C836D01

 …….

 FFFFFFFFFFFFFFFF

76F8701A32BC6F53

Key=0x0000000000000001

Plaintext

Ciphertext

0000000000000000

38ac9e7f28c81a09

etc.

In practice of course it is not done like this.

If the keylength k is 128-bits then there are 2128 possible keys. Its important to understand just how big that number is.

2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456

Many different block ciphers have been suggested. For example

SAFER -
suitable for 8-bit microprocessors

IDEA -
suitable for 16-bit microprocessors

RC5 -

suitable for 32-bit processors.

AES -

suitable for all types of processor

Note that C/C++ implementations of some of these are available from p:\public\mike\crypto\

The block size must be big enough to prevent a “Code-Book” attack. Here a table of matching plain-text/cipher-text pairs is built up from a known plaintext attack. Thereafter the plaintext is recovered by simply looking it up in the table (assuming the same key is in use). A block size of 64/128 bits makes the construction of such a code-book infeasible. Note that 264 = 18,446,744,073,709,551,615.

A key of 128 bits is safe from a “brute-force attack”, where the attacker simply tries all possible keys until he/she hits upon the right one.

A block cipher basically mushes up the input plaintext under control of the key. One thing they all have in common is the use of multiple identical rounds, each one of which is affected by bits derived from the key by a key-scheduler.

Choosing a key

Its important that the key is unguessable. Clearly a truly random 128-bit key is unguessable. However its important that a 128-bit key has truly 128-bits of entropy. If a less than truly random source is used for key generation, then the entropy can be a lot less than this. If the entropy is less than 264 then a powerful computer(s) can find the key

For example consider the use of a simple Ascii phrase as a 128-bit key

Key = "freddy_t_mercury"

This might be a remembered password.

Now the first letter of the passphrase can take any of approx. 128 printable values, so it gives us 7 bits of entropy. However an "f" is more likely to be followed by an "r", or perhaps a vowel, so the entropy (uncertainty) of the second letter is a lot less. Tests show that after the first few letters, each extra letter of a typical pass-phrase adds only 1 extra bit of entropy - not the expected 8.

So a clever pass-phrase cracking program could find this particular pass-phrase.

Moral - A cryptographically secure remembered pass-phrase should have at least 32 ascii characters, and should include random non-english elements with non-alphabetics and misspellings, for example

Key = "fred&dy_mEcsutyx_is_fondly_remembered

This is much more difficult to crack and probably secure. Unfortunately it is also very difficult to remember.

Block Cipher Design

At the heart of many Block ciphers lies an “involution”, that is a self inverse function. This is required to ensure a basic requirement of any block cipher - that it is reversible.

The involution at the heart of the IDEA cipher is a good example.

Now express X and Y in terms of A and B. If these values of X and Y are passed through the same circuitry again, we recover A and B.

It only remains to design a suitable complex function F() which mixes in the key K with the data. Typically many identical rounds are used to mix the key and data.

Action:
Implement in C the Involution for A, B and K all 8 bit chars. Use F(W,K) = (W+K) mod 256. Confirm that it is reversible.

Two important criteria for a good block cipher:-

Avalanche effect - Every bit of the key and of the plaintext should effect every bit of the ciphertext. A good block cipher achieves this after one or two rounds.

Strict Avalanche effect - A one bit change in the key or in the plaintext should, on average, change 50% of the ciphertext bits.

Substitution Boxes - S-boxes
A block cipher is just a large keyed S-Box. A small fixed S-Box is easily implemented in software:-

S[0] = 3

S[1] = 2

S[2] = 0

S[3] = 1

So 0 is substituted by a 3, 1 by a 2 etc.

To aid with decryption, the inverse S-Box is required as well

iS[0] = 2

iS[1] = 3

iS[2] = 1

iS[3] = 0

Clearly S[iS[n]] = n

An S-Box is a key building block for the design of a block cipher. It can be easily seen that a random S-Box is a highly non-linear element, and non-linearity is important.

S_Boxes are implemented in software as fixed arrays. The input byte is substituted by another: x=S[y]; The encryption algorithm SAFER-K64 uses the following two S-Boxes, one the inverse of the other, so that x=iS[S[x]], e.g. 9=iS[S[9]].

Most block cipher use fixed S-Boxes. Some (TwoFish/BlowFish) use random S-Boxes that are generated from the Key.

unsigned char S[256]=

{ 1, 45,226,147,190, 69, 21,174,120, 3,135,164,184, 56,207, 63,

 8,103, 9,148,235, 38,168,107,189, 24, 52, 27,187,191,114,247,

 64, 53, 72,156, 81, 47, 59, 85,227,192,159,216,211,243,141,177,

255,167, 62,220,134,119,215,166, 17,251,244,186,146,145,100,131,

241, 51,239,218, 44,181,178, 43,136,209,153,203,140,132, 29, 20,

129,151,113,202, 95,163,139, 87, 60,130,196, 82, 92, 28,232,160,

 4,180,133, 74,246, 19, 84,182,223, 12, 26,142,222,224, 57,252,

 32,155, 36, 78,169,152,158,171,242, 96,208,108,234,250,199,217,

 0,212, 31,110, 67,188,236, 83,137,254,122, 93, 73,201, 50,194,

249,154,248,109, 22,219, 89,150, 68,233,205,230, 70, 66,143, 10,

193,204,185,101,176,210,198,172, 30, 65, 98, 41, 46, 14,116, 80,

 2, 90,195, 37,123,138, 42, 91,240, 6, 13, 71,111,112,157,126,

 16,206, 18, 39,213, 76, 79,214,121, 48,104, 54,117,125,228,237,

128,106,144, 55,162, 94,118,170,197,127, 61,175,165,229, 25, 97,

253, 77,124,183, 11,238,173, 75, 34,245,231,115, 35, 33,200, 5,

225,102,221,179, 88,105, 99, 86, 15,161, 49,149, 23, 7, 58, 40};

unsigned char iS[256]=

{128, 0,176, 9, 96,239,185,253, 16, 18,159,228,105,186,173,248,

192, 56,194,101, 79, 6,148,252, 25,222,106, 27, 93, 78,168,130,

112,237,232,236,114,179, 21,195,255,171,182, 71, 68, 1,172, 37,

201,250,142, 65, 26, 33,203,211, 13,110,254, 38, 88,218, 50, 15,

 32,169,157,132,152, 5,156,187, 34,140, 99,231,197,225,115,198,

175, 36, 91,135,102, 39,247, 87,244,150,177,183, 92,139,213, 84,

121,223,170,246, 62,163,241, 17,202,245,209, 23,123,147,131,188,

189, 82, 30,235,174,204,214, 53, 8,200,138,180,226,205,191,217,

208, 80, 89, 63, 77, 98, 52, 10, 72,136,181, 86, 76, 46,107,158,

210, 61, 60, 3, 19,251,151, 81,117, 74,145,113, 35,190,118, 42,

 95,249,212, 85, 11,220, 55, 49, 22,116,215,119,167,230, 7,219,

164, 47, 70,243, 97, 69,103,227, 12,162, 59, 28,133, 24, 4, 29,

 41,160,143,178, 90,216,166,126,238,141, 83, 75,161,154,193, 14,

122, 73,165, 44,129,196,199, 54, 43,127, 67,149, 51,242,108,104,

109,240, 2, 40,206,221,155,234, 94,153,124, 20,134,207,229, 66,

184, 64,120, 45, 58,233,100, 31,146,144,125, 57,111,224,137, 48};

Modes of Operation

A Block Cipher (AES, SAFER, IDEA, RC5) can be used to encipher data by breaking it up into 128 or 64 bit chunks

The simplest mode of operation is called ECB (Electronic Code Book)

Ci = Ek(Pi)

Pi = Dk(Ci)

There are some problems with this:-

· Identical plaintext produces identical ciphertext

· Much less than 264 plaintexts are likely to appear – allowing codebook attack. Attacker builds up a table of plaintext/ciphertext from known plaintext attacks, and subsequently just looks up plaintext given ciphertext.

· If first few plaintext blocks are always identical – known plaintext for free!

· Shuffling the Ciphertext blocks, shuffles the plaintext (and may change its meaning).

CBC – Cipher Block Chaining

Ci = Ek[Pi (Ci-1]

Pi = Dk[Ci] (Ci-1
This method is far superior, without much extra overhead.

By XORing the previous ciphertext block with the plaintext, we can be confident that the input to each block is effectively randomly distributed – every 264 possible input is equally likely (recall that the ciphertext is effectively random).

Shuffling Ciphertext blocks would affect decryption.

If plaintext block Pi is changed, Pi+1, Pi+2 etc must be re-encrypted.

The IV should be different for each message. It need not be a secret, but it is important that it cannot be tampered with, otherwise it could be tailored to change the meaning of the first plaintext block.

One-way Hash function

A one-way hash function H(x) is a key-less function that is easy to evaluate in one direction, but computationally infeasible to evaluate in the other.

y=H(x)

Easy

x=H-1(y)

Very Difficult

A hash, (also known as a message digest, or a cryptographically strong checksum), is a kind of fixed length digital fingerprint for a piece of data, which could itself be of any size. It is commonly used to prevent tampering with digital documents. Given a document it is easy to calculate its hash – but it is infeasible to forge a document to have a pre-determined hash. The hash is normally appended to the document. A recipient can re-calculate the hash and make sure that it is the same as that attached to the document. If the document has been tampered with, the hash will be different.

An international standard hash function is SHA – the Standard Hash Algorithm. It is designed rather like a keyless, irreversible block cipher. It produces a 160-bit hash.

The recipient calculates the hash. If it is the same as that received via the secure channel, the message has not been tampered with.

Even a single bit change in the document leads to a completely different hash value - hash functions also exhibit the strict avalanche effect.

For a full description, see g:\public\mike\crypto\sechash.txt

The chances of a tampered document having the same hash as the original are 1 in 2160
However by randomly generating 280 random documents, it is likely that 2 or more may have the same hash (as a consequence of the Birthday Paradox). This is not really a feasible attack as the two matching documents will not make any sense, but is does explain why the hash is 160 bits rather than, say, 64 bits.

If the hash were only 64-bits, then this kind of swindle may be possible:-

1. Alice prepares two versions of a contract, one favourable to Bob, the other bankrupts him.

2. Alice randomly modifies each in such a way as to not change its appearance, for example replacing SPACE with SPACE-BACKSPACE-SPACE. In this way generate 232 documents that all look identical.

3. Find a matching pair from one of each type.

4. When Bob transmits his contact to his bank, intercept it and substitute the other contract, which has the same hash value.

Very recently some new standard hash algorithms have been announced, SHA-256, SHA-384 and SHA-512, which generate 256/384 and 512 bit hashes respectively. See http://csrc.nist.gov/cryptval/shs.html

PDF spec at: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf
One way functions have all kinds of applications in Cryptography…..

Random numbers
Random numbers have an important role in cryptography. For example a random 128-bit AES session key may be used to secure a communications link. If the key is not truly randomly generated, then it may be guessed. A sophisticated attacker, knowing the method used to generate the "random" key, may exploit this knowledge and some weakness in the generation process to be able to limit in some way the extent of an exhaustive search.

Or knowing the current state of the random number generator he/she may be able to calculate what state it was in in the past, or what state it will be in in the future. In cryptography a random number generator needs only one simply stated feature; its output must be unpredictable.

Computers, being deterministic devices, are not good at generating truly random numbers. The typical pseudo-random number generators as implemented in most computer languages, are useless for Cryptography. In C it is called rand(), and it is absolutely dire (in terms of randomness, unpredictability and period). The most common type is the linear congruential generator, of the form

Xn+1 = (aXn + c) mod m
However although its output may satisfy most statistical tests for randomness, given a small part of its output its state may be determined, and its future outputs predicted. Also its prior state may be deduced. Also note that if the initial "seed" value X0 is the same, it will always generate the same "random" sequence.

However once a truly random seed with sufficient entropy has been found (say 128 bits), then it is easy for a computer to extend this indefinitely using this value to seed a cryptographically-secure pseudo-random number generator (CSPRNG).

To get the original seed, the timings between keystrokes, mouse movements, disk-drive accesses, network statistics etc may be harvested and used. See www.counterpane.com/yarrow.html for an example of this approach.

Once the seed has been found, a CSPRNG can be used to provide any number of random bits. Many practical implementations use a one-way hash function as a component to build a CSPRNG from a PRNG.

Observe how the second one-way hash function "firewalls" the internals of the PRNG. The first SHA application (to the seed) "distills" out 160 bits of true randomness from a less than completely random input seed. So the original seed may consist of a lot of relatively low-quality, low-entropy information, as long as it has within it 160 bits of entropy, or "unguessability".

There are simple lagged Fibonacci PRNGS with large amount of internal state and periods of in excess of 21000 which are suitable in this context.

The key attribute of a CSPRNG is that its output should be unpredictable. In other words it should be computationally infeasible for someone who has observed the output for any length of time, to predict with better than 50% chance whether or not the next bit will be a 0 or a 1.

There are sources of truly random numbers - radioactive decay has a physically provable randomness. Also various electronic circuits based on reverse biased diodes and chaotic oscillators generate random numbers, but such devices are pernickity and expensive.

One way to attack a cryptographic system is to attack and cripple its random bit generator, so for example its starts generating all 1's, or some predictable pattern. Its also a way to build a "trap-door" into a system. So perhaps it best that some electronic black box is not used.

In response to the requirement for genuinely random numbers, Intel built a true random number generator (based on a noisy diode circuit) into the Pentium III. See http://developer.intel.com/design/software/drivers/platform/security.htm
See also the program rng.c on p:\public\mike\crypto\. This tests for the presence on the Intel TRNG (True Random Number Generator)

Password-based Authentication

A very common scenario is where an individual logs into a remote server using a password. In this situation the password need not be very long, as a server can cut off an attacker who appears to be trying lots of passwords. It would seem however that the server needs to keep a file of the passwords agreed with each individual user. This file then becomes a tempting target of attack.

However in fact the server needs only store a one-way function of the password y=H(p). So when Alice logs on, she sends her password p. The server then calculates H(p) and compares it with the stored value.

Unfortunately a dictionary attack is still possible. By obtaining the password file and generating their own file containing the one-way hashes of say the 1,000,000 most popular passwords and comparing the two files for matches, many passwords can be found. The most popular passwords are names of boy/girl-friends, names of dogs, expletives etc. Such files are freely available from the Internet.

This kind of attack can be made more difficult by the server appending a random salt value to the password before applying the one-way function, and storing this salt value alongside the one-way function value <s,H(p,s)> in the password file. This also makes it safer to use the same password on different computers.

This makes more work for an attacker, as each individual entry will need to tested against each dictionary entry. Its clearly best to use a password that isn't in one of those password dictionaries. Some systems will not allow common passwords to be used.

The moral is that the password file, despite being protected by a one-way function, should also be physically protected. Attacks of this kind are one of the most common types of successful break-ins to computer sites.

B

A

Y

X

K

F

IV

K

C2

P2

K

C1

P1

K

C0

P0

K

C2

P2

K

C1

P1

K

C0

P0

C= R(P

P

P = R(P(R

R

R

Random Bytes

Random Bytes

Intruder

E

K

P

D

C = Ek(P)

Intruder

K

P

= Dk[Ek(P)]

W

Ciphertext

Plaintext

Key Scheduler

Key

Multiple identical rounds ……

Transmit via insecure channel

Convey via secure channel

Message…… maybe many megabytes…..

160-bit

hash

Large PRNG internal state

RAW SEED

SHA

PRNG

SHA

Random bits

