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Abstract

In this thesis methods of automatic fingerprint recognition are investigated. An introduction to
fingerprint recognition as well as previous research done in this field are presented. This is followed
by descriptions of the approaches we have followed while investigating the subject. These include
a feature-based approach and a correlation-based approach. Two methods of data generation are
discussed. The first is the well known paper-and-ink method, while the second is an optical data

generation method which overcomes many of the problems of the paper-and-ink method.

Preprocessing algorithms which reduce the effect of poor quality data and which subsequently improve
classifier performance were developed and are presented. The effect of these algorithms on classifier

performance in the feature-based and correlation-based approach is measured and presented.

In the feature-based approach features are extracted from fingerprint images (e.g. the directional
image, which is a numerical description of the fingerprint) or transformations of the images (e.g. the
Fourier transform) to use with various classifiers. These classifiers include the neural-net, linear and
nearest-neighbour classifiers. 100% classification performance was obtained from features extracted
from the frequency domain of smoothed binary images. The best classification performance obtained

from features extracted from the directional image was 90% using the neural-net classifier.

In the correlation-based approach fingerprint images are classified using a correlation classifier, without
any feature extraction. The best classification result obtained using the correlation classifier and

preprocessed images was 95%.

We show simulation results obtained for both approaches. From these results the best method of
fingerprint recognition for this type of data is identified and we conclude with a discussion of possible

extensions to some of the approaches.
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Uittreksel

In hierdie verhandeling word outomatiese vingerafdruk herkenningsmetodes ondersoek en beskryf. 'n
Inleiding tot die veld van vingerafdruk herkenning sowel as 'n beskrywing van werk wat voorheen
gedoen is, word verskaf. Daarna word die twee benaderings wat ons ondersoek het beskryf, naamlik
'n kenmerk-gebaseerde benadering en ’'n korrelasie-gebaseerde benadering. Twee metodes van data-
generasie word beskryf. Die eerste metode is die bekende papier-en-ink metode, terwyl die tweede 'n
optiese datagenerasie metode is, wat baie van die probleme wat bestaan met die papier-en-ink metode

oorkom.

Voorverwerkingsalgoritmes wat die effek van swak gehalte data verminder en dus klassifikasie resultate

verbeter is ontwikkel en word beskryf. Die invloed van hierdie algoritmes word gemeet en verduidelik.

In die kenmerk-gebaseerde benadering word eienskappe uit die vingerafdruk (bv. ’n rigtingbeeld,
wat ‘n numeriese beskrywing van die vingerafdruk is) en uit transformasies van die vingerafdruk (bv.
die Fourier transformasie) onttrek vir gebruik met verskeie klassifiseerders. Hierdie klassifiseerders
is onder andere die neurale-netwerk klassifiseerder, 'n lineére klassifiseerder, asook ’'n naasliggings
klassifiseerder. 100% toets klassifikasie is verkry van eienskappe wat onttrek is uit die frekwensievlak
van vergladde binére vingerafdrukke. Die beste klassifikasie wat verkry is deur eienskappe van die

rigtingbeeld te gebruik, was 90%. (Dit is verkry deur 'n neurale-netwerk klassifiseerder te gebruik.)

In die korrelasie benadering word vingerafdrukke geklassifiseer met 'n korrelasie klassifiseerder, sonder
dat eienskappe uit die vingerafdruk onttrek word. Die beste vertoning verkry met hierdie benadering

was 95%.

Resultate verkry uit beide benaderings word beskryf. Uit hierdie resultate word die beste metode
van vingerafdruk herkenning vir hierdie tipe data gekies, voordat ons afsluit met 'n bespreking van

moontlike verbeterings aan sommige van die benaderings.
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Chapter 1

Introduction

Fingerprint comparison is a fundamental method for the identification of people. Fingerprint identi-
fication is based on the immutability and the individuality of fingerprints. Immutability refers to the
permanent and unchanging character of the pattern on each finger, from before birth until decompo-
sition after death. Individuality refers to the uniqueness of ridge details across individuals. No two

persons, even identical twins, have been found to have identical fingerprints.

Because of the large collections of fingerprints and recent advances in computer technology, there has

been increasing interest in automatic classification of fingerprints.

The two main uses for the automatic classification of fingerprints are identification and verification.
In this thesis we investigate identification. Identification is the process whereby an unknown print is
matched against all the prints in the database. The unknown print is identified as belonging to one

of the classes of that database.

Verification is the matching of the print from a known class to the prints of the same class in the
database. If this matching between the prints is not good enough the print cannot be verified as

belonging to that class.

Reliable fingerprint recognition normally requires extensive preprocessing of the fingerprint image to
transform it from a greyscale image into a usable binary image. Features can then be extracted from

this binary image to use with various classifiers.

Several approaches for preprocessing and fingerprint recognition have been investigated. Preprocess-
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ing for fingerprint classification was implemented by Ch and Rao [1]. The main functions of this
preprocessing were the filling of isolated holes, removing noise, bridging gaps and finally thinning the

image.

Moayer and Fu [2] developed a syntactic tree system approach to represent and classify fingerprint
images. The fingerprint patterns are subdivided into sampling squares which are preprocessed for
feature extraction. A set of regular tree languages is used to describe the fingerprint patterns and set

tree automata are used to recognize the coded patterns.

A method for ridge detection in a fingerprint was investigated by Verma, Majumdar and Chatterjee [3].
This method of ridge detection divides the print into sampling matrices for which the dominant ridge
direction is determined. The collection of directions obtained from all the sampling matrices is known
as the directional timage. Verma and Chatterjee [4] classify partial fingerprints by using a regular

grammar and the dominant direction of the sampling matrices as features.

Structural matching is used by Hrechak and McHuch [5] to identify fingerprints. Structural matching
is based on local relations among features. That is the identification of identical characteristics that

are identically positioned.

We have investigated several of these approaches and found them inadequate for application in a
fingerprint recognition system. A possible fingerprint recognition system should contain the following

attributes:

It must be automatic,

use dedicated hardware,

be fast

e and very reliable.

The preprocessing [1] is not effective enough for an automatic fingerprint recognition system. The
same can be said for the various approaches to classification. We feel that better results can be
obtained by the use of a new generation classifier such as the neural-net classifier and features which
describe the fingerprint in a more reliable manner. Hrechak et al. [5] obtained 100% on a training
set, but classification performance dropped using the test set. (A test set was generated by deleting
regions from the training set.) Verma et al. [4] achieved a classification performance of 75% using the

directional image.

Fingerprint recognition
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In this thesis we describe the approaches we have followed in solving the fingerprint recognition
problem. We describe the preprocessing implemented, the different types of feature vectors extracted
and the different classifiers used. The classifier performance for the various approaches is presented

as well as a comparison between the different approaches.

Two approaches were followed in classifying fingerprints. They are feature-based and correlation-
based classification. Feature-based classification uses features which are extracted from the greyscale
or binary image, or a transformation of these images. Various preprocessing algorithms are applied
to these images to improve the quality of the image before features are extracted. In some instances,
the images are transformed into another domain before an attempt is made to extract features which
describe the original image. (An example of such a transformation is the Fourier transform.) These
features are then used to classify the fingerprint. Linear, nearest-neighbour, neural-net or any other

classifier can be employed.

Correlation-based classification is an attempt to classify fingerprint images by means of a correlation
classifier. A correlation classifier determines the best match for an unknown test class. Preprocessing
algorithms applied to the images before the correlation can improve the classification. Such prepro-
cessing techniques were developed and are presented in this thesis. They include a recursive-greyscale
edge follower to binarize the greyscale image and an adaptive window concept for the smoothing of

the binary image.

We now give a short description of the topics that are discussed in each chapter of this thesis.

Chapter 2 discusses ways in which the fingerprint recognition problem can be solved. The classical
approach normally used for fingerprint recognition is discussed and the pattern recognition approach
followed in this thesis is presented. We also discuss the various types of classifiers used in our exper-
iments, i.e. the nearest-neighbour, linear, neural-net and correlation classifiers. The advantages and

disadvantages of each of these are discussed.

In the next chapter (Chapter 3), two preprocessing algorithms devised by the author are discussed.
These are the recursive-greyscale edge follower in Section 3.2 and the algorithm for smoothing of the
binary image in Section 3.3. A third algorithm developed by Orit [6] is used to extract the skeleton from
the smoothed binary image. These preprocessing algorithms can be applied in the feature-based as well
as the correlation-based classification schemes. Examples of results of the preprocessing algorithms are
also given. The effect on classification performance by the application of these algorithms is discussed

in Chapters 4 and 5.

Fingerprint recognition



Chapter 1: Introduction page 4

In Chapter 4 feature-based fingerprint recognition is investigated. Features can be extracted from the
fingerprint image in the spatial domain as well as the frequency domain. The reliability of these fea-
tures is improved by the application of the preprocessing algorithms described in Chapter 3. Different

types of features are extracted from fingerprint images. These features include:

1. feature vectors extracted from the directional image (a numerical description of the ridge flow

of a fingerprint),
2. feature vectors extracted from the frequency domain and

3. feature vectors built by extracting minutiae from the fingerprint image.

The performance of three different classifiers (a nearest-neighbour, linear and neural-net classifier) are
measured on these different types of feature vectors. The effect of the application of the preprocessing

algorithms of Chapter 3 is measured and presented.

Correlation-based classification is discussed in Chapter 5. In this approach no features are extracted
from the fingerprint image. Classification is obtained by a “direct” comparison of the fingerprint
images. Preprocessing algorithms such as those described in Chapter 3 play an integral part in the
successful use of the correlation classifier. By good preprocessing the matching of fingerprint images
is improved, which means better classification results are obtained. The effect of the preprocessing is

shown in Chapter 5.

In our final chapter (Chapter 6) we compare the feature-based and correlation-based approaches.
The “best” type of feature in the feature-based classification scheme, as well as the reasons for the
good performance are discussed. We conclude with a discussion of possible extensions to some of the

approaches we have investigated.

Fingerprint recognition



Chapter 2

Methods of fingerprint recognition

In this chapter we discuss two methods of fingerprint recognition: the classic approach used by the
police and our own automated pattern recognition approach. These two were chosen because the first
is the most common and well known method and because the second has some new and innovative

approaches not used in the approaches described in Chapter 1.

2.1 The classic approach

There are three basic patterns in fingerprints, namely arches, loops and whorls. They can be subdivided
into eight types: plain arch, tented arch, ulnar loop, radial loop, plain whorl, central pocket loop, double

loop and an accidental pattern as shown in Fig. 2.1.

1. The plain arch is the simplest pattern. The ridges enter on one side, rise to form a wave in the

center, and exit smoothly on the opposite side.

2. The tented arch is a variation of the plain arch. Ridges at the center are thrust upward in a

more abrupt manner.

3. The radial loop, which is a subset of the shown plain loop, is a pattern in which one or more
ridges enter on the side toward the thumb (the side on which the radius bone on the forearm

lies), recurve, and then exit on the same side.
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4. The ulnar loop (also a type of plain loop) is a pattern in which one or more ridges enter on the
side toward the little finger (the side on which the ulna bone of the forearm lies), recurve, and

then exit toward the same side.

5. The plain whorl is a pattern in which one or more of the ridges form a complete revolution

around the center.

6. The central pocket loop is a variation of the plain whorl pattern. Some ridges tend to form a

loop pattern, which recurves and surrounds a whorl at the center.

7. The double loop is another type of whorl. In it two separate loop formations are present and

may surround each other.

8. The accidental is used to describe those patterns that do not conform to any pattern previously

described. It is quite rare.

In Fig. 2.1 only a plain loop is shown, as the difference between the ulnar loop and the radial loop is

only applicable for a specific hand.

p

N

Plain arch Tented arch

3

Plain loop Plain whorl

o

Central Pocket Double loop
Loop

E

Accidental

Figure 2.1: Basic fingerprint patterns

Fingerprint recognition
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Two more features of a print are used in classification: the core which is the approximate center of
the pattern and the delta which is the outer, terminal point of the pattern. Examples of these are

shown in Fig. 2.2.

The fingerprint pattern also contains other features that can be useful in classification of fingerprints.
These features, known as minutiae are those small unique patterns on the fingerprint such as ridge
endings and forks. Examples of minutiae as well as the role they play in classification are described

in Section 4.3.

Delta Core

Figure 2.2: The core and delta of a fingerprint pattern

The goal of the classic fingerprint classification system is to assign a working formula to a set of
fingerprints which will enable the set of prints to be classified or located in a file. The formula consists
of numerical values which are assigned to fingerprint patterns (the values differ from finger to finger).
These values are then summed to form a numerical description of the set of fingerprints, which are
used in conjunction with the type of pattern appearing in the index fingers and numerical values

computed from the ridge counts of various fingers.

One such method is the Henry system [7]. This system makes use of the complete set of 10 fingerprint
patterns of both hands to classify a person. The complete modified Henry system which is an extension

of the original Henry system is described in [7].

Fingerprint recognition
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2.1.1 The Henry System

We briefly describe the major steps in the original Henry system, as the modified Henry System is

similar, but requires a few more classification steps.

e The first step in classification using the Henry system is primary classification. Different nu-
merical values are assigned to whorl patterns of different fingers. The right-hand thumb having
the highest value and the left-hand little finger the smallest value. The sum of these numerical

values is computed for odd and even fingers. This sum is then used in the primary classification.

e Secondary classification follows primary classification and is based on the types of patterns

appearing in the index fingers.

o Next is subsecondary classification which is based on the ridge count (the number of line crossings

from the core to the delta) for the index, middle and ring fingers.

o Final classification follows the subsecondary classification. It is based on the ridge count of the
loop pattern on the right little finger. If the right little finger does not have a loop pattern, a
ridge count is made of the left little finger.

All these values obtained from the different steps are then used to form a description of the set of

fingerprints for that specific person.

There are other classification systems, but most are merely modifications and extensions to Henry’s
original system. The only other system worth mentioning is the Battley System [8] which is used to
file and retrieve single prints. This system determines the general pattern type, after which the core
is located and classified. Delta and ridge counting in loops and ridge following in whorls are employed
to describe a single fingerprint pattern. The police verifies the identity of a person by matching two
prints of the same finger by a system known as the seven point system. One print is normally retrieved
from a data base, while the other is that lifted from a crime scene. These two prints are then compared
by matching seven or more minutiae. If seven corresponding features are identified on the prints, the

person is positively identified.

In our approach the idea is to classify single prints in an automatic manner using pattern recognition
ideas. Various solutions exist for solving the fingerprint recognition problem using this approach. In
our next section a functional blockdiagram of a typical classification system as well as the methods

used in the approach are presented.

Fingerprint recognition
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2.2 The pattern recognition approach

A pattern recognition solution to the fingerprint problem is shown in Fig. 2.3. The system consists of
five subsystems. Data generation is the first step. It transfers the 3-dimensional print into a usable
digitized greyscale image. The image is used in the second subsystem which performs preprocessing,
such as the binarization etc. as described in Chapter 3. Feature extraction follows the preprocessing.
This subsystem tries to generate a unique feature vector for the data which was generated in the first
step. Feature extraction is followed by classification. In this subsystem a classifier is used that was
trained on the vectors generated during the feature extraction phase. The result of classification is the
identity of the fingerprint. The final step is the postprocessing stage where the results of the classifier

are evaluated.

Different methods and algorithms can be employed in the pattern recognition approach. The methods
we investigated in this thesis are summarized in the graphical representation in Fig. 2.4. It shows a
tree with two main branches that represent the approaches that we investigated, namely feature-based

and correlation-based recognition .

The branch on the left side represents the feature-based recognition approach. We divided this ap-
proach into two sub-branches. The first sub-branch consists of the directional image calculation,
feature extraction from the directional image and finally classification. The other sub-branch consists
of preprocessing, before we split it up once again. In this division minutiae is extracted before classi-
fication, while a Fourier transformation transforms the image into the frequency domain from which
features are extracted by using a wedge-ring detector. These features are then used for classification

purposes.

The other approach we investigated is represented by the right branch. In this approach we performed

preprocessing before classification with the correlation classifier.

In the solution as presented in Fig. 2.3, various algorithms can be employed for data generation
through to the classification. Different classifiers as well as different types of feature vectors can be
used. We discuss the classifiers that were used in our experiments, as well as their main advantages
and disadvantages, in the following section. The different types of features are discussed in Chapters 4

and 5.

Fingerprint recognition



Chapter 2: Methods of fingerprint recognition page 10

DATA GENERATION

IMAGE

PREPROCESSING

"CLEAN"
IMAGE

FEATURE
EXTRACTION

FEATURE
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Figure 2.3: Functional blockdiagram
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Figure 2.4: Methods in fingerprint recognition
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2.3 Classifiers

2.3.1 The Nearest-Neighbour Classifier

This classifier is the most common and simplest classifier. It consists of a database containing the set
of labelled training feature vectors. An unknown test vector is classified in the following manner: the
distance between the test vector and every one of the training vectors is computed. The unknown
test vector is labelled as belonging to that class for which the distance is the smallest. As distance
measure we used the euclidian distance E computed with the following equation:

D

Eij =Y | Ti—U%]
d=1

with D the dimension of the feature vectors, T? the i** test vector and U7 the j'* training vector.

One advantage of the nearest-neighbour classifier is that no training is associated with it. This
means that the classifier is ready to use the moment labelled feature vectors are available. Another
advantage is its ability to generate extremely complex decision boundaries, which enables the classifier

to generalize very effectively.

This classifier has a few disadvantages. It is extremely noise sensitive. This means a test vector can be
labelled as belonging to a certain class because the distance between the test vector and an outlying
vector of that training class was the smallest. Two more disadvantages are the extensive computation
time for classification (the euclidian distance between the test vector and every one of the training
vectors has to be calculated for each classification) and the large storage space needed because all the

training vectors have to be stored for use in calculations for each classification.

2.3.2 The Linear Classifier

The linear classifier use linear discriminant functions. Such a linear discriminant function can be

written as

g(x) = wihx + wp

where w is the weight vector, x the feature vector and wy the threshold weight. According to [9]

e a linear discriminant function divides the feature space by a hyperplane decision surface,

Fingerprint recognition
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e the orientation of the surface is determined by the normal vector w,
e the location of the surface is determined by the threshold weight wy,

e the discriminant function is proportional to the signed distance from x to the hyperplane.

Determining the weight vector w and the threshold weight wy is a field of study on its own. Several
procedures have been investigated. A popular method of finding w is to define a criterion function
J(w) that is minimized if w is a solution vector. This reduces the problem to minimizing a scalar
function, and can often be solved by a gradient-descent procedure. Starting with an arbitrary weight
vector wq, computing the gradient of J with respect to w at this point w1, and moving a small dis-
tance from wq in the direction of the steepest descent, we obtain the next estimate of w. In general

then:

Wkl = Wk ~ Pk V I (W)

Hopefully this sequence of weight vectors converges to a solution minimizing the criterion function.

Several criterion functions have been suggested [9]. These include:

e The perceptron criterion function,

e a minimum squared-error criterion function,

the Widrow-Hoff criterion function

and the Ho-Kashap algorithm.

The linear classifier we used in our experiments uses the minimum squared-error criterion function.
The linear classifier draws linear decision boundaries in feature space. This is the main disadvantage
if the data is not linearly separable, in which case no meaningful test classification can be obtained
since the net does not have the ability to distinguish between the different classes. However, the linear
classifier is very fast and good classification can be obtained if the data is linearly separable. In our

experiments we found that some features are linearly separable as the test classification performance

was 100%.

2.3.3 The Neural-Net Classifier

The neural-net classifier used in our experiments is a three-layer Perceptron-type trained with the

conjugate-gradient algorithm [10].
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A 3 layer neural-net classifier is shown in Fig. 2.5. The first layer is the input layer whose outputs are
the values of the elements in the feature vector to be classified. Thus the number of input neurons is
equal to the dimension of the feature vector plus one. The second layer is the hidden layer while the
third layer is known as the output layer. Each neuron in the second layer computes the sum of all
its inputs. This sum is then used in conjunction with a transfer function to determine that neuron’s
output. The number of hidden neurons is problem specific and must be determined by means of
repeated experiments with different numbers of hidden neurons. The output layer has one neuron for
each class. Each output neuron performs the same calculation as the hidden layer neurons. We used
a sigmoid transfer function for both hidden and output neurons. If a specific neuron in the output
layer has a high output value for an input feature vector, the feature vector is labelled as belonging

to that class for which the output neuron is high.

Each connection between the the input layer and hidden layer, as well as each connection between
the hidden layer and the output layer has a certain numerical value associated with it. All these
numerical values are contained in the weight matrix W. The training of the neural net consists of
determining the best weight matrix W for that specific problem. The initial values of the weight
matrix are determined randomly but must adhere to specific rules. These rules state that the values

must not be too big or too small and that they must be distributed randomly [11].
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Figure 2.5: 3-layer Neural-network classifier

The neural net has several distinct advantages. The foremost is its ability to generalize very well due
to its ability to generate very complex decision boundaries in feature space. If overtraining occurs, this
can be a drawback if too complex decision boundaries are drawn. Another advantage is that the neural
net does not require a huge amount of memory during classification. The number of computations

required during classification is also very small.
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2.3.4 The Correlation Classifier

This classifier also contains a database of labelled training images. To classify, it determines the
correlation between the test image and all the training images. The test image is then labelled as
belonging to the class of the training image that gives the largest correlation value anywhere in the

correlation function.

Correlation is normally implemented in the spatial domain. For the functions f and g the correlation

is defined as
M-1N-1

fe ) @g(ey) =) D f(mn)g(z +m,y+n)

m=0 n=0

with 2 =0,1,2,... M —1land y=0,1,2,..., N — 1 [12].
However, this is computationally expensive. This is a big disadvantage of the correlation classifier.

For this reason we implemented the correlation in the frequency domain. For the functions f and g

the following correlation theorem holds:

flz,y) @ g(z,y) — F(u,v)G*(u,v)

where * represents the complex conjugate, F' and GG the Fourier transforms of f and g respectively

and ® the correlation in the spatial domain.

The Fourier transform F' of a function f can be computed with the following equation:

1 M-1N-1
Fuv)= 2= > > flz,y) exp[—j2n(uz/M + vy/N)]

foru=0,1,2,.... M—1land v=0,1,2,...., N — 1.

The computational burden is still considerable when implementing the correlation using the frequency
domain, as the Fourier transform has to be calculated for each test image and each training image,

followed by an inverse Fourier transform calculation of the product of these Fourier transforms.

We demonstrate the computational burden of both these approaches with an example. A normal

implementation in the spatial domain requires the following number of multiplications and additions:
(M x N)?

with M and N the z and y dimensions of the images respectively. This is an upper limit in the
correlation calculation. For 256 x256 images the computational expense for this implementation is

4.3 x 10° calculations.
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A more suitable implementation would require the following number of multiplications and additions:

N-1M
QZE —i)(N—=j)+MxN

ji=1 i=1

where M and N are the same as described previously. This implementation requires 2.1 x 10° calcu-

lations.

The computational expenses associated with correlation implemented in the frequency domain is of
the order [12]:
2x M x M x Mlogy M + M x M

where we assume that the images are square with dimension M. For a 256256 image the value of
M = 512 to prevent aliasing. This implementation requires 1.7 x 10° multiplications and additions,

which is less than the calculations required for the spatial implementation.

This concludes our description of the different classifiers and different approaches to fingerprint recog-
nition. This chapter was meant as an introduction into the basic fingerprint methods. Our next
chapters give more detail of the solution to the fingerprint recognition problem. The next chapter

(Chapter 3) deals with methods of data generation as well as preprocessing algorithms.
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Chapter 3

Preprocessing

Preprocessing plays an integral part in any classification system. Good preprocessing techniques
reduce the effect of poor quality data and this results in better classification performance. In this
chapter we discuss two methods of data generation, namely the paper-and-ink method and an optical
data generation method, and two preprocessing algorithms developed by the author specifically for
fingerprint recognition. We also present some results obtained by the application of these algorithms,
as well as a skeleton extraction algorithm, to a fingerprint image. The application of preprocessing
algorithms such as the skeleton extraction algorithm enables us to improve classifier performance.

This is demonstrated in Chapters 4 and 5.

3.1 Data generation

In our system fingerprint images are digitized by means of a video camera and a framegrabber. The
video camera’s output is an analog signal of the fingerprint image. This analog signal is then quantized
into 256 discrete levels by means of the framegrabber. The framegrabber stores this quantized image

as a two-dimensional array of bytes.

Two main methods of data generation are known. The first method is the well known ink-and-paper
method. The finger is rolled in ink and then rolled on paper to transform the three-dimensional finger
into a two-dimensional print that can be photographed by the video camera and quantized by the

framegrabber.

17



Chapter 3: Preprocessing page 18

This method is not very reliable because the ink can smear and blur the whole image or part of the
image. Plastic distortion plays a role as well, because the finger being rolled on the paper is not
pressed equally hard each time the print is taken. It is also time consuming and very dirty. This
makes it unsuitable for application in any automatic fingerprint classification system, but can be used

in experimentation as well as manual methods such as those employed by the police.

The second method is a more efficient and reliable optical data generation system. The system as
shown in Fig. 3.1 consists of a prism and a uniform light beam that transforms the three-dimensional

data into two-dimensional data which can be photographed and quantized.

DIGITIZED PRINT

!

FRAMEGRABBER
CAMERA
UNIFORM LIGHT
REFLECTED
2-DPRINT /
PRISM
JAVAVAVAVAVA

FINGER PRESSED
AGAINST PRISM

Figure 3.1: Optical data generation

This system makes use of the total internal reflection obtained in a 90° prism. The uniform light
beam is shone into the prism. Normally all this light is reflected out of the prism by the 45° surface of
the prism. However, when a finger is pressed on this surface, the reflection coefficient of that surface
is changed at the places where the ridges of the finger touch the prism’s surface. At the places where
the refraction index is changed, no light is reflected. This means that the ridges of the print are not
reflected and appear dark in the image, while the background is of a high intensity. This image of the
fingerprint consisting of reflected light and unreflected light is photographed by the video camera and
quantized by the framegrabber.
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This method of data generation is not perfect either. The contrast and focus of the image obtained from
the optical method are poor. Most images have a continuous slope in greyscale values superimposed on
the finer detail, which means that binarization techniques based on a global threshold are unsuitable.
However the advantages outweigh the disadvantages. The method is clean and very fast and most of
the problems can be overcome by good preprocessing techniques such as greyscale-to-binary conversion

as described in the next section.

3.2 Binarization

The algorithm used in our system for the conversion of the greyscale image into a binary image is
based on a recursive procedure for line thinning by line following [6]. We converted this line-following

algorithm for use with greyscale images [13].

3.2.1 The algorithm for binarization

We now describe the greyscale-to-binary image conversion algorithm.

The edges of the greyscale fingerprint are extracted using the Marr-Hildreth algorithm [14]. (We refer
to the image obtained by the application of the Marr-Hildreth algorithm as the “gradient image”.)
The Marr-Hildreth algorithm extracts a binary outline (the edges) of the ridges from the original
greyscale image. These edges in the gradient image are one pixel wide. This image is then used in

conjunction with the greyscale image to extract the binary image from the original greyscale image.

The binarization is performed by means of adaptive windows. Two windows are used in each step of
a recursion process to determine the binary image. The windows are the gradient window built in the

gradient image, and the greyscale window built in the greyscale image.

The algorithm is based on six steps which we summarize here and illuminate further in subsequent

sections:

e The first step in the algorithm is the determination of a suitable starting point for the recursion.
The greyscale image is used to determine this starting point. The current lowest greyscale value
in the image is found. (Assume this point is X). This location is used as the reference point

around which the gradient and greyscale windows are built.
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e The next step is the building of two small windows (the greyscale and gradient windows) in their
respective images. The location of these windows is either the point X determined in step 1, or
the location determined in step 6. The determination of the dimensions of these windows are
described in Section 3.2.4. Fig. 3.2 shows part of the greyscale image with the small greyscale

window superimposed on the image.

Window

!

Greyscale
values

Figure 3.2: Greyscale image with window

e The third step is the determination of transition regions on the boundaries of the greyscale and
gradient windows. A transition region is that part on the boundary of a window which has
been identified as containing useful information such as ridges of a fingerprint. This process of
determinating transition regions is explained in Sections 3.2.2 and 3.2.3. The transition regions

of a window determine the next location of the windows in the recursion process.

e The fourth step in this algorithm is the evaluation of the number of transition regions which were
calculated for each window. If the number of transition regions calculated for both greyscale
and gradient windows is the same, the transition regions of the greyscale window are used in
the following steps of the algorithm. If the number of transition regions differ, we know that a
problem occurred due to the poor quality of the image at that location. Then we use the window
with the smallest number of transition regions in the following steps of the recursion process. We
use the smallest number of transition regions because a false edge can be created if the bigger
number is used. As a result of this choice the image is much clearer as the noise is suppressed.
If either one of the windows has zero transition regions, the other window’s transition regions
are used in the following steps. If both windows have zero transition regions we know that we
have reached the end of a ridge whereupon the recursion returns to a previous level. Fig. 3.3

shows a window with two transition regions.

e The fifth step is the binarization of the greyscale image. This binarization is conducted for each

step in the recursion. Both the greyscale and the gradient windows are used in the binarization
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Transition
regions

Figure 3.3: Window with two transition regions

process. The binary image is determined for each of the windows as described in Section 3.2.5.

The “OR”ed binary image of the two windows is the binary image of the fingerprint.

e The sizth step is the determination of the location of the windows in the next step of the
recursion. The transition regions of the window which was chosen in step four are used. The
endpoints of one the transition regions of the window are used as the reference points around
which the greyscale window in the greyscale image and the gradient window in the gradient
image are built. Consecutive steps in the recursion process are shown in Fig. 3.4. The current
window as well as the next window in the recursion process are shown. If the chosen window has
more than one transition region the first transition region’s endpoints are used as the location
around which the following windows will be built (step 2). The first ridge is thus followed by
the building of successive windows until no more transition regions are found for any of the two
windows. The recursion then returns to that depth of recursion where more than one transition
regions were found. It then follows the other ridge by using that transition region’s endpoints as
the location for step 2. In this way all the ridges connected to each other are followed to their

respective ends.

Once the location of the next windows have been determined the process starts again with step 2,

which is the building of the windows in the gradient image and the greyscale image.

Steps 2 through 6 are repeated until no transition regions exist for either one of the windows. After
this the process starts again with step 1 which is the determination of the lowest greyscale value in

the greyscale image for the first location for the two windows.

We now describe the methods by which the transition regions are determined for the greyscale and

gradient windows, and the method by which the dimensions of the small window is calculated for a
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Next window

Current window ‘

Figure 3.4: Next step in recursion

step in the recursion.

3.2.2 Determination of transition regions for the greyscale window

To determine the transition regions on the boundary of the greyscale window, the boundary of the
window is searched for a maximum value (in our case ridges, the foreground, have the lowest greyscale
values while the background has the higher greyscale values). Next the current greyscale window’s
lowest value on the boundary is found and is compared with the maximum value. If the difference
between these two is larger than a certain percentage of the maximum we assume that the window
is situated on a ridge. If not, and no transition regions are found on the boundary of the gradient
window, we know that the lowest greyscale value was due to spot noise in the image. We then return

to step 1 to determine a new starting location for the windows.

Assume that the difference between the maximum and the minimum was larger than the required
value. (We used 0.6 of the maximum.) The boundary of the current greyscale window is then searched
for occurrences of values less than the threshold set by the percentage of the maximum. All these
elements which are less than our threshold and which are on the boundary of the greyscale window is
known as transition region elements. A collection of this transition region elements forms a transition

region. Fig. 3.3 shows the window with two transition regions on the boundary of the window.

Next we describe the determination of the transition regions for the gradient image.
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3.2.3 Determination of transition regions for the gradient window

The algorithm to determine the transition regions for the gradient image window is based on a blob-
colouring routine [15] which tries to colour the ridges in the gradient window. The algorithm searches
for the smallest greyscale value in the greyscale window which corresponds to an edge pixel in the
gradient window. This value is assumed to be the largest greyscale value that could be part of a ridge
and is used as an upper threshold in the blobcolouring routine. The blobcolouring routine searches
for a pixel with the background colour in the gradient image and colours pixels connected to this,
but cannot cross the edge pixels of foreground colour which forms the gradient image. When a pixel
with the background colour in the gradient image is found, the corresponding greyscale value in the
greyscale window is compared with the upper threshold determined earlier. If the greyscale value
is lower than the upper threshold, the blobcolouring routine colours the pixel because it is assumed
to be part of the ridge. If the greyscale value is higher than the upper threshold we know that the
blobcolouring routine is probably outside the edges of the gradient image (and this could possibly

result in incorrect transition regions.) Because of this the pixel is not blobcoured.

This procedure prevents the blobcolouring routine from failing if the edge of the gradient image is
not a solid line. The transition regions are then determined by counting the areas in which the

blobcolouring colour occurs on the boundary of the gradient window.

3.2.4 Determination of window dimensions

Assume that the window must be built with location X and Y as the reference points. The window
is built around these two points with a buffer of d pixels on each side. This is shown in Fig. 3.5. The

dimensions of the window can therefore be calculated as :
DIMX =| X2z —Y.z |+2xd

and

DIMY =| Xy—Y.y|+2xd

where X.z is the x-coordinate of point X, Y.z the x-coordinate of point Y and similarly X.y the
y-coordinate of point X and Y.y the y-coordinate of point Y.

A value of two was used for d in all our experiments. Step 2 of Section 3.2.1 builds the small windows
in the gradient and greyscale windows. If step 2 follows step 1, X=Y; if step 2 follows step 6, X and

Y are the endpoints of a chosen transition region.
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Y

Figure 3.5: Window with d pixel buffer

3.2.5 Calculating the binary image from the windows

The binary image for a set of windows is formed by the logical “OR”ing of a binary image determined

from the greyscale window and a binary image determined from the gradient window.

The binary image for the greyscale window is formed by thresholding the greyscale window using a
certain percentage of the maximum (60 % in our case) as threshold. The elements below the threshold
are retained. The binary image of the gradient window consists of all the elements in the window

which were blobcoloured.

The elements in the “OR”ed binary image are deleted from the original greyscale image as well as the

gradient image to prevent the recursion from retracing its path.

This algorithm works very well for images with a continuous slope in greyscale values. An example
of the application of this algorithm on the greyscale image of Fig. 3.6(a) is shown in Fig. 3.6(b). One
problem of this algorithm is that the binary image is not a very smooth image. It has holes and gaps
in the ridge parts of the image. One of the eventual goals is to extract the skeleton and the existence
of these holes and gaps deforms the skeleton considerably, as can be seen in Fig. 3.15. Fortunately
this problem can be overcome by the algorithm described in the next section. It improves the binary

image by removing the holes and gaps in the binary image and is known as smoothing.

3.3 Improvement of binary image

The improvement of the binary image algorithm is based on an adaptive window concept. The first

part of the algorithm locates possible isolated holes or gaps. Next the isolated holes or gaps in the
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(a) Greyscale image

Figure 3.6: Binarization of greyscale image us
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edge part of the fingerprint are removed. This is done by using the adaptive window and a recursive

blobcolouring routine.

3.3.1 Finding possible isolated holes or gaps

The binary image is searched from top left to bottom right for any possible isolated holes or gaps.
An isolated hole is defined as any island of background colour in the image completely surrounded
by the foreground colour. Fig. 3.8 shows an isolated hole in the ridge. Gaps are defined as regions
of background colour not completely surrounded by foreground colour, which are not part of a merge
or branch point. Fig. 3.9 shows a gap in the ridge. To find holes or gaps, the image is searched for
a transition from the foreground colour to the background colour, left to right and top to bottom.
When such a transition is found the position is marked (location X). The image is then searched for a
transition from the background colour to the foreground colour. If such a transition is found (location
Y) the distance between these two points is computed. If this distance is smaller than a chosen length
the algorithm continues with the filling of the hole or the bridging of the gap by using the window. If

the computed distance is too big the whole process of finding a transition starts again.

Isolated hole

Background

Foreground

Figure 3.8: Isolated hole in ridge

3.3.2 Removing holes

Once a region has been identified as containing a possible isolated hole or gap the algorithm verifies
whether it is a isolated hole or a gap. This is done by building a window containing the region’s data.
The window is built using the transition points (X and Y) as reference points for the calculation of
the window dimensions as described in Section 3.2.4. This window therefore contains the possible

isolated hole or gap as well as the surrounding data as shown in Figures. 3.10 and 3.11.
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Foreground
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Background

Figure 3.9: Gap in ridge

Window Background
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Hole Foreground

Figure 3.10: Isolated hole surrounded by a window
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A 4-connected blobcolouring routine is then used to decide if the possible isolated hole is a definite
isolated hole. The window is blobcoloured with the starting point in the region between the initial
transition regions, X and Y. The blobcolouring routine seeks the background colour and colours it’s

path in colour A.

Next the boundary of the window is inspected for any occurrences of the colour A. If none of the
boundary elements is of colour A we know that the possible isolated hole is completely surrounded
by foreground colour. Therefore we know that it is a definite isolated hole. Such a case is shown in
Fig. 3.10. The isolated hole is removed by colouring all the elements in the window of colour A to
the foreground colour in the original data. The algorithm then starts again by searching for possible

transition regions (X—Y)as described earlier.

If some of the boundary elements were of colour A the hole is not completely surrounded by the
foreground colour. Therefore it cannot be filled as it might be a possible merge-branch point or a gap.
The boundary elements of the window containing colour A form transition regions. These regions are

used in the determination of possible gaps, as described in the next section.

3.3.3 Removal of gaps

This part of the algorithm bridges gaps in the edge part of the fingerprint. An example of a gap

surrounded by a window is shown in Fig. 3.11.

Window Background
|
Border
transition
1
Gap Foreground

Figure 3.11: Gap surrounded by a window

First the number of transition regions as shown in Figures. 3.10, 3.11 and 3.12 are counted. Fig. 3.10
has no transition regions on the boundary. Fig. 3.11 has one transition region, while Fig. 3.12 has

two transition regions. In order to bridge gaps in the binary image the size of each transition region
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Figure 3.12: Example of window with 2 transition regions

is also calculated. If a window only has one transition region and if the size of the transition region
is greater than a user defined length, it is a gap and not part of a possible merge-branch point. This
[43)

is true if we make the assumption that a true merge-branch point has a very sharp “v”. Therefore if

the size of the transition region is large we define it as a gap and not as a merge-branch point.

The original gap is then bridged by drawing a line from the two points on the edge where the gap
started. This transforms the gap into an isolated hole. The hole is then filled with the foreground

colour by the recursive blobcolouring routine.

If the size of the transition region along the boundary of the window was less than the user defined
length, or if there was more than one transition region on the boundary of the window, a bigger
window is built around the original window. The background is again coloured by the blobcolouring
routine. Once again the number of transition regions along the boundary of the window is counted. A
heuristic rule determines if it is a gap of not: If the number of transitions regions is less than or equal
to two and if the distance (D in Fig. 3.12, if two transition regions are present) between the regions
on the boundary of the window is greater than the user defined length, the gap is bridged. All other
occurrence counts are ignored as being noise as it is highly unlikely that more than two transition

regions will exist on a window boundary for a clear fingerprint.

The application of this algorithm to a binary image smooths it. This smoothed binary image is then

more suited for the extraction of the skeleton of the binary image.
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3.4 Thinning the binary image

When the binary image has been smoothed the skeleton is extracted from the binary image. The
skeleton is a thinned binary image of the original binary image which is only one pixel thick throughout

the image.

We implemented an adaptive line thinning by line following algorithm [6] to extract the skeleton from
the binary image. This algorithm uses an adaptive window to recursively follow a ridge. The skeleton

of the ridge is extracted by connecting the center points of adjacent windows in the recursion process.

3.5 Preprocessing results

To evaluate the performance of our algorithm, we tested it on various images of fingerprints. Typical
results are shown in Figures. 3.6(b), 3.7 and 3.13 to 3.15. All these results were obtained from the
same original image (Fig. 3.6(a)), which was produced by means of an optical data generation method

as described in Section 3.1.

/ 'ry image using a global threshold

Fig. 3.13 shows the binary ima, . y using Brink’s correlation threshold algorithm [16]. This
algorithm determines a global #& f/or the binarization of the greyscale image. This threshold is
selected by maximizing the correlation between the original greyscale image and a thresholded binary
image. As can be seen this method is quite inadequate for our application - the leftmost region is

washed out completely. The reason for this is the continuous slope in greyscale values superimposed

on the greyscale image.
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Fig. 3.6(b) shows the same image obtained by using the recursive greyscale edge follower described in
Section 3.2. Although this image is not perfect, it clearly demonstrates the improvement obtained by
the application of our edge follower. No region of the image is completely spoilt, and improved ridge

continuity has resulted.

The smoothed binary image obtained from the image in Fig. 3.6 is shown in Fig. 3.7. This was
obtained by application of the smoothing algorithm described in this thesis. Most of the noise which

one would expect to disrupt the binary edge follower has been removed.

WO 177 g ) /f/
W77
Figure 3§ @ /// d binary image of smoothed image
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=
Fig. 3.14 shows the thinned binarsEi %@e (skeleton) of the smoothed version. Fig. 3.15 shows the

=
“/—/

same image’s skeleton without tlﬁeﬁﬁf'ﬁatlon of the smoothing algorithm. Comparison of these two

images clearly demonstrates the improvement in the quality of the skeleton of the image which was
smoothed. The unsmoothed image in Fig. 3.15 is disrupted by noise and no reliable features can be
extracted from this image. On the other hand, reliable features can probably be extracted from the

skeleton in Fig. 3.14, as will be shown in Chapter 4.

In this chapter data generation, preprocessing algorithms and results obtained by the application of
these preprocessing algorithms on data that was generated by the optical data generation method were
discussed. In the next chapter one branch of the methods in the fingerprint recognition tree in Fig. 2.4
is discussed. This branch is the feature-based recognition approach. Different types of features used

are discussed as well as results obtained from using these features with various classifiers.
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d binary image without smoothing
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Chapter 4

Feature-based recognition

In this chapter we investigate the feature-based recognition approach of Fig. 2.4. The features used
are those extracted from the directional image [17], from the frequency domain [18] and minutiae
extracted from the prints themselves. We used these features in experiments with different classifiers.
The classifiers used were the neural-net classifier (Section 2.3.3), the linear classifier (Section 2.3.2)

and the nearest-neighbour classifier (Section 2.3.1).

We used the same data set in all our experiments. This data set was generated with the optical data
generation method described in Chapter 3. The data set consisted of 60 training images and 20 test
images from 20 classes. That is, each class consisted of three training images and one test image.

Each class was generated from a thumb of a person. The resolution of each image was 256 x 256 pixels.

In the next section we describe experiments conducted on features extracted from the directional
image. Following that we describe experiments conducted on features extracted from the frequency

domain and in the final section experiments conducted using the minutiae as features are discussed.

4.1 The directional image

4.1.1 Description of directional image

In this section experiments conducted using the directional image as basis for feature extraction are

described. We describe the manner in which the directional image is calculated, as well as the manner
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in which we extract features from this directional image.

In order to calculate the directional image, the image is subdivided into small blocks. (We chose blocks
of 16 x16 pixels in our 256x 256 images.) The directional image consists of the dominant directions of

each of the small blocks. The dominant direction of a block is calculated in the following manner:

The possible directions are quantized and each of these is called a subdirection. Refer to Fig. 4.1 where
a quantization of four is illustrated. The four directions are labelled 0 to 3. Numerical values for each
of the subdirections are calculated from the pixel intensities, after which the dominant direction is
chosen from these. The value of a subdirection is equal to the sum of the absolute differences between
the average value and the greyscale values along the subdirection. The subdirection with the smallest

value (i.e. smallest variation) is the dominant ridge direction.

Refer to Fig. 4.1 for an example of this calculation. The small block shown is of dimension 5x5. Subdi-
rection 0 consists of greyscale values 5,6,7,8,9 with an average of 7, subdirection 1 of 10,20,7,40 and 50
(average of 25.4), subdirection 2 of 10,15,7,25 and 30 (average of 17.4) and subdirection 3 of 10,20,7,40
and 50 (average of 25.4). Consider subdirection 2: the average value is (10 + 15+ 7 + 25 + 30)/5 =
17.4. The absolute values of the differences are: | 10—17.4 |=7.4,|15—174|=2.4,|7—17.4 |=10.4,
|25—17.4|=7.6 and | 30 —17.4 |= 12.6. The sum of these values is 40.4. In a similar fashion the sum
of differences is computed for subdirection 0 (resulting in a value of 6), 1 (78.4) and 3 (also 78.4). For
this example subdirection 0 is the dominant direction as it has the smallest sum of differences value

(6 compared to 78.4 and 40.4).

50 30 50

40 | 25 | 40

20 15 20

Figure 4.1: Block quantized into 4 subdirections

As the directional image is a numerical description of the fingerprint pattern, different feature vectors
can be extracted from the numerical values. In the following subsections we describe the types of

features we implemented in our experiments.
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4.1.2 Feature vectors

Histogram feature vectors

Our first type of feature vector is based on the histogram of the dominant ridge directions. Each bin

in the histogram is used as an element of the feature vector.

We demonstrate this with an example. In Figures 4.2 and 4.3 a small portion of a fingerprint pattern
which has been divided into small blocks is shown. There is a total of 25 blocks in this portion of the
print: 5 rows and 5 columns. Each block is quantized into 4 subdirections for the calculation of the
dominant ridge direction. This means the dominant direction can be any direction from 0 through to
3. Fig. 4.2 shows the dominant direction for each small block while Fig. 4.3 shows the numerical value
assigned to that dominant direction in a small block. Because the original small blocks were quantized
into 4 subdirections the histogram consists of 4 bins, one bin for each quantized subdirection. For the
directional image in Fig. 4.2 the histogram is shown in Fig. 4.4. The feature vector for the directional

image in Fig. 4.2 is the same as the values in the bins of Fig. 4.4 i.e. (6,4,9,6).

Figure 4.2: Directional image

Figure 4.3: Numerical values of directional image

Variations on this type of feature vector can be obtained by excluding some of the small blocks from
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Bin0 | Bin1l | Bin 2 | Bin 3

Figure 4.4: Histogram for Fig. 4.3

contributing to the histogram. We define two types of feature vectors: the large feature vector where
all the small blocks of the directional image contribute to the histogram and a small feature vector
where the outer ring of small blocks does not contribute to the histogram. The idea with the small
type of feature vector being that noise on the edge of the image is ignored in the calculation of the
feature vector. The small feature vector for our example is constructed when row 1 and 5 as well as
column 1 and 5 are ignored in the calculation of the histogram. The small feature vector in this case

is (1,2,4,2).

Feature vectors for direct comparison

This type of feature vector is constructed using the directional image as basis. The feature vector’s
dimension is equal to the number of small blocks in the directional image. The numerical values of
the blocks in the directional image are elements of the feature vector. That is, the dominant direction
of the z'® block is inserted into the z*® element of the feature vector. For the directional image of
Fig. 4.2 the corresponding feature vector is (3,3,2,3,3, 2,2,3,3,2, 2,2,2,2.2, 0,0,1,1,1, 0,0,0,0,1). This

type of feature vector is defined as a large type of feature vector.

The small feature vector is again constructed by ignoring the outer ring of numerical values. That
means all the elements that corresponds to a block situated on the outer ring receives the value 0.
That is, each fingerprint image receives the same direction on the outer ring. The dimension of this
type of feature vector is not reduced to 15 as the outer ring elements have a direction i.e. 0. The

small feature vector for Fig. 4.2 is (0,0,0,0,0, 0,2,3,3,0, 0,2,2,2,0, 0,0,1,1,0, 0,0,0,0,0).

Feature vector with variance bins

When a direction for a small block is calculated, a certain amount of uncertainty about this direction
exists. This uncertainty can be utilized in classification by calculating the variance of the dominant

direction for that block.

The variance is computed perpendicular to the dominant direction for that block and in a similar

manner as the sum of differences value (Section 4.1) which is used to determine the dominant direction

Fingerprint recognition



Chapter 4: Feature-based recognition page 37

from the subdirections. The calculation of the variance is shown in Fig. 4.5. For each position in the
dominant direction the sum of differences is calculated along a line perpendicular to the dominant
direction. In Fig. 4.5 the dominant direction is represented by the thick line with the seven thin
lines representing the area where each calculation of the sum of differences value perpendicular to the

dominant direction is performed. These seven values are then summed to form the variance for that

block.

Dominant direction

Variance calculated
perpendicular to
dominant direction

Figure 4.5: Calculation of the variance for a block

The feature vector is constructed by using the variance as a means to increase the number of bins in
the histogram of directions. For instance: each direction has 3 bins associated with it, a low, medium
and high variance. When the dominant direction is calculated for a block, the variance determines
which bin of that direction (in the histogram of directions) is incremented. Fig. 4.6 shows this type

of construction with the various variance bins for each quantized level.

Different feature vectors can be constructed by adjusting the number of bins for the variance and by
adjusting the number of quantization levels for the dominant direction. Once again large and small
feature vectors are defined. Large feature vectors correspond to the case where all the small blocks
contribute to the histogram of variance bins i.e. 256 small blocks in the 256x256 images. Small

feature vectors are vectors constructed similarly, but the outer ring of small blocks is ignored.

4.1.83 Simulation results

Each type of feature vector used in our directional experiments is labelled with a number to facilitate
graphical representation. This association between the type and its label is shown in Table 4.1. The
performance of the different classifiers for different feature vectors based on the directional image can
be seen in Figures 4.7 to 4.16. The performance of a specific type of feature vector can be determined

by reading its label from the figure and cross referencing it with Table 4.1.
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Bin # || Variance

Low
0 Medium
High

Low
1 Medium
High

Low

2 Medium
High

Low
3 Medium
High

Figure 4.6: Variance type of feature vector

Label | Type of feature vector Dimension of feature vector
0 Large histogram Number of quantized levels
1 Small histogram Number of quantized levels
2 Large direct Number of blocks
3 Small direct Number of blocks
4 4 variance bins, large Number of quantized levels x 4
) 4 variance bins, small | Number of quantized levels x 4
6 8 variance bins, large Number of quantized levels x 8
7 8 variance bins, small | Number of quantized levels x 8
8 12 variance bins, large | Number of quantized levels x 12
9 12 variance bins, small | Number of quantized levels x 12
10 16 variance bins, large | Number of quantized levels x 16
11 16 variance bins, small | Number of quantized levels x 16

Table 4.1: Label associated with each type of feature vector
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Classification results using the neural-net classifier

All experiments were performed with the directional image as the basis for the feature vectors. Quan-

tization levels of 8, 16, 24 and 32 were used.

The neural-net classifier was a 3-layer perceptron with a varying number of hidden neurons (1,3,5,...,15).
A least-squares criterion function was used with conjugate gradient optimization to determine the

weights [10].

Each experiment with a specific type of feature vector was repeated with 10 different randomly chosen
initial sets of weight values. The greyscale images were divided into small blocks of dimension 16x16
pixels i.e. 256 small blocks in the 2566 x256 images. No preprocessing was done on any of the images

prior to the extraction of the directional image.

The classification performance for the different types of feature vectors are shown in Figures 4.7 to
4.11. The average as well as the maximum classification performance over all trails for training and

testing are shown.

Figures 4.7 to 4.11 and Table 4.1 show that the best classification (90%-maximum for the test set in
Fig. 4.7) is obtained for a quantization level of 8 and by using the variance type of feature vector (type
5). The worst classification performance is obtained from the feature vector for direct comparison.
The average test classifier performance in Fig. 4.7 starts near 60% for type 0 features (large histogram
feature vectors), drops sharply for the large and small direct comparison feature vectors before climbing
to a maximum for type b (4 variance bins, small feature vector). From this point to type 11 the average
test classifier performance stays between the 60% and 70% levels. The average training performance
was good (100%) except for the direct comparison feature vectors where the neural-net classifier
was unable to draw meaningful decision boundaries in feature space. (This is illustrated by the bad
classifier performance for types 2 and 3 on the test sets.) Because of the bad training, we assume that
the direct comparison feature vector does not contain meaningful information which can be used by

the neural net.

Fig. 4.8 shows the performance (maximum test and average test) of type 5 feature vector (4 variance
bins, small type of feature vector) vs. the number of hidden neurons. The best performance is obtained
for 9 and 15 hidden neurons. In Fig. 4.8 the classifier performance is very low for 1 hidden neuron.
It then increases to a maximum of 90% (for 9 hidden neurons) as the number of hidden neurons is

increased.
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Figure 4.7: Neural-net classifier performance - 8 subdirections
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Figure 4.8: Neural-net classifier performance vs. number of hidden neurons

Fingerprint recognition



Chapter 4: Feature-based recognition page 41

Sixteen subdirections were used to construct the feature vectors whose performance is shown in
Fig. 4.9. The average test classifier performance again starts at 60% before dropping very low for
the direct comparison type of feature vectors (type 2 and 3). From types 4 to 11 the average per-
formance varies between 60% and 70%. Once again the neural net was able to find suitable minima

during training, except for the direct-comparison types of feature vectors.
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0 | | | | |
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Feature vector label

Figure 4.9: Neural-net classifier performance - 16 subdirections

The average test classifier performance for feature vectors constructed from directional images which
were quantized into 24 levels is shown in Fig. 4.10. The classifier performance is similar to that
obtained from a directional image constructed from 16 quantized levels. Once again the neural-net

classifier fails on features using the direct comparison type of feature vector.

The neural-net classifier performance for features extracted from a 32 level quantized directional image
is shown in Fig. 4.11. The direct comparison type of feature vector fails once again, the histogram-
based feature vector’s performance is near 50% and the variance-bins type of feature vector between
50% and 70%. In general the small type of feature vector performs worse than the large vector of the

same type.

The best classifier performance obtained using the neural-net classifier and the directional image was
90%. In general the variance-based feature vector performed better than the histogram-based feature
vector. The direct-comparison feature vector failed on all accounts. It is meaningful that the variance-
based feature vectors perform better than the histogram-based feature vectors as the uncertainty that

exists in the determination of the dominant direction is now used to improve the classifier performance.
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Figure 4.10: Neural-net classifier performance - 24 subdirections
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Figure 4.11: Neural-net classifier performance - 32 subdirections
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Classification results using the linear classifier

Figures 4.12 to 4.15 show the classification obtained by using the linear classifier (Section 2.3.2) and
the features as described in Table 4.1. The experiments were performed on feature vectors generated

by using different quantized levels of 8,16,24 and 32.

Fig. 4.12 shows the linear classifier performance for each type of feature. The feature vectors for direct

comparison fail, with the histogram-based between 40% and 50% and the variance-based between 50%

and 70%.
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Figure 4.12: Linear classifier performance - 8 subdirections

In Figures 4.13 and 4.14 the performance for features extracted from a directional image obtained from
16 and 24 quantized levels are shown. The performance of the feature vectors for direct comparison
is similar, failing on both accounts. In both cases classifier performance for features using the small
type of construction is lower than that using the large type. This shows that meaningful information

is lost by ignoring the outer ring of blocks in the construction of the feature vector.

Fig. 4.15 shows the classifier performance for directional images constructed from 32 quantized levels.
Again, classifier performance is lower for all the small types of construction than those obtained from

the large type. The direct comparison feature vectors failed again.

The best classification performance was 90% on the variance type of features with 8 quantized levels

(type 8). The worst classification was obtained from the feature vectors using the direct comparison
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Figure 4.13: Linear classifier performance - 16 subdirections
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Figure 4.14: Linear classifier performance - 24 subdirections
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Figure 4.15: Linear classifier performance - 32 subdirections

type of feature vectors. For features extracted from the higher quantized directional images, the

small type of construction performed worse than the large type of construction, which reinforces the

hypothesis that meaningful information is lost by using the small type of construction with a linear

classifier. We assume that the directional image is more noise sensitive at higher quantized levels,

which leads to the drop in classifier performance.
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Classification results using the nearest-neighbour classifier

We repeated the experiments using the features as in Table 4.1, using the nearest-neighbour classifier

as described in Section 2.3.1. The results are shown in Fig. 4.16.
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Figure 4.16: Nearest-neighbour classifier performance 8-32 subdirections

It can be seen from Fig. 4.16 that the best classification was 85% for 24 quantized levels using the
small histogram feature vector (type number 1). This is not as good as the 90% classification which
was obtained with the neural-net and linear classifiers. The worst classification was again on the
direct-comparison type of feature vector. In general classifier performance was centered around the
70% mark with variations to either side. The best classification performance was on features using

the small type of construction but no definite trend can be seen.

4.2 The Fourier transform and wedge-ring detector

4.2.1 Description of features

All the features that have been extracted thus far have been from the spatial domain. Unique features

can also be obtained from the images transformed to the frequency domain [18].

The image is transformed from the spatial domain into the frequency domian by the application of a
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two-dimensional Fourier transform. The image is centered around the origin in the frequency domain

by the addition of phase terms in the spatial domain. The mathematical operation for this is:

expl ™) f(t) = F(w—m)

Features are extracted from the frequency domain by using a wedge-ring detector [19] whose center
corresponds to the origin. An example of a wedge-ring detector with 4 rings (labelled 1,2,3 and 4) and
4 wedges (labelled A,B,C and D) is shown in Fig. 4.17. The summation of the elements (integration of
the energy) in each ring or each wedge forms one element of the feature vector. Therefore the feature

vector constructed from the wedge-ring detector in Fig. 4.17 is:

O F(wi), > Fw), Y F(w), Y F(w;), Y F(wi), > F(wi), > F(w), Y F(w))

with Yy F(w;) the summation of all the elements in the frequency domain for wedge or ring X. By

varying the number of rings and wedges the dimension of the feature vector is adjusted.

Figure 4.17: Wedge-ring detector

Manual fingerprint classification normally uses the minutiae. Minutiae in a fingerprint image is as-
sociated with high frequency components, while the ridges are at lower frequencies. Because of this,
the wedge-ring detector is able to extract meaningful information from the frequency domain, as the

high frequency components will differ from class to class because of differences in minutiae.

4.2.2 Simulation results

Experiments were performed with a varying number of wedges and rings. Each of these feature vectors
with a different number of wedges and rings is labelled. This relationship between the different feature

vectors and their respective labels are given in Table 4.2.

Experiments were performed on greyscale images, unsmoothed binary images, smoothed binary images

and thinned binary images extracted from the smoothed binary images. Refer back to Fig. 3.6 for an
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Label | Number of wedges | Number of rings | Dimension of feature vector
0 2 6 8
1 2 12 14
2 2 18 20
3 2 24 26
4 4 6 10
5 4 12 16
6 4 18 22
7 4 24 28
8 6 6 12
9 6 12 18
10 6 18 24
11 6 24 30
12 8 6 14
13 8 12 20
14 8 18 26
15 8 24 32

Table 4.2: Labels associated with variations in wedges and rings

example of an unsmoothed binary image, Fig. 3.7 for the smoothed version of Fig. 3.6 and Fig. 3.14

for the thinned binary images extracted from the smoothed binary image of Fig. 3.7.

Classification performance using the neural-net classifier

The same experimental setup was used in these experiments as in the experiments using the directional
image and the neural-net classifier (Section 4.1.3). Each experiment was repeated with 10 different
initial sets of weight values. Once again the number of hidden neurons was varied. We show the
average classification performance as well as the maximum performance for each different feature

vector on the test set.

Fig. 4.18 shows the classification performance on features extracted from the Fourier transform of the
greyscale images. The maximum classification performance achieved was 95% for type 15. Table 4.2
shows that type 15 has 8 wedges and 24 rings to give the feature vector a dimension of 32. Fig. 4.19
shows the performance versus the number of hidden neurons for type 15. The best performance is

obtained with 11 hidden neurons.
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The average test performance for each feature vector which has 6 rings (types 0,4,8 and 12) is much
lower than the performance obtained with more rings (12,18 and 24), although classifier performance

drops for a high number of rings and wedges (24 rings with 6 wedges and 24 rings with 8 wedges).
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Figure 4.18: Neural-net classifier performance - greyscale images
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Figure 4.19: Neural-net classifier performance vs. hidden neurons

The experiments were repeated on features extracted from the frequency domain of the unsmoothed
binary images. The maximum classification shown in Fig. 4.20 is again 95%. This is not higher than
the maximum classification achieved on the greyscale features, but more feature vectors reach this

classification performance. They are types 3,9,10,11,13 and 14. The average test performance shown
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in Fig. 4.20 shows that performance for 6 rings in the wedge-ring detector is again lower than the

performance with the higher number of rings for each number of wedges.
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Figure 4.20: Neural-net classifier performance - unsmoothed binary images

In the next experiment features were extracted from the Fourier transform of the smoothed binary
images. The results of our experiments are shown in Fig. 4.21. The classification performance ob-
tained in these experiments are notably higher than those obtained from the greyscale images and the
unsmoothed binary images. The best classification performance was 100% for types 1,2,3,9,10,11,13
and 14. The average test performance is the highest for features using 6 wedges. Once again the
average test performance is low for a small number of rings, but increases as the number of rings is

increased.

Our final experiment used features extracted from the frequency domain of the thinned binary images.
The classification performance for these features are shown in Fig. 4.22. The overall classification
performance dropped from the 100% achieved in our previous experiments to a best performance of

95% for type numbers 9,10 and 11.
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Figure 4.21: Neural-net classifier performance - smoothed binary images
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Figure 4.22: Neural-net classifier performance - thinned binary images
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Classification results using the linear classifier

The classifier performance obtained on the features of Table 4.2 extracted from the Fourier transform
of the greyscale images and by using the linear classifier is shown in Fig. 4.23. The best classification
performance is 90% for types 13 and 14. Average test performance increases for the variation in the

rings for a specific number of wedges.

100
95_ -
90 -
85 _X' CX  >< _
% 80 - -N -
75 -
70 Train ave <— n
d Train max —+—
65 Test ave === -
Test max X -
60 | | | | | | |
0 2 4 6 8 10 12 14 16
Feature vector label

Figure 4.23: Linear classifier performance - greyscale images

Fig. 4.24 shows classification performance for features extracted from the Fourier transform of the
unsmoothed binary images. The best classification improved to 95% on types 9,10,11,13,14 and 15.
Fig. 4.24 shows that feature vectors constructed with 6 rings generally perform worse than feature

vectors with a higher number of rings for a specific number of wedges.

Our next figure (Fig. 4.25) shows the classification performance on features extracted from the Fourier
transform of the smoothed binary images. Again 100% classification was achieved for types 9,10,13,14
and 15. Once again classifier performance improves with the higher number of rings for a specific
number of wedges. Unfortunately this trend does not continue to a very high number of rings, as

classifier performance drops for the highest number of rings, independently of the number of wedges.

The improvement in maximum classification performance by the application of the preprocessing
algorithms suggests that similar classification performance can be obtained from the features extracted
from the Fourier transform of the thinned binary images. Unfortunately this is not the case. Fig. 4.26

shows us that the general classification performance drops, and that the maximum correct classification
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Figure 4.24: Linear classifier performance - unsmoothed binary images
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Figure 4.25: Linear classifier performance - smoothed binary images
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obtained is only 90% for types 8,10,11 and 13. We assume that the reason for this drop in classifier
performance can be contributed to the loss of uniqueness in the frequency domain through the thinning

of the image.
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Figure 4.26: Linear classifier performance - thinned binary images
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Classification results using the nearest-neighbour classifier

In this experiment we used the same features (Table 4.2) but used the nearest-neighbour classifier.

Fig. 4.27 shows that the best classifier performance of 100% was obtained from features extracted from
the smoothed binary image. The types for which this excellent classification performance was obtained
are 9,10,13 and 14. The worst classification performance was on the smoothed thinned binary images.
The classification performance obtained from the smoothed binary images increase as the number of
wedges and rings increase, but an upper limit exists where performance drops if the dimension of the

feature vector gets too high.
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Figure 4.27: Nearest-neighbour classifier performance

In all our experiments the maximum performance on the test set was obtained from features extracted
from the frequency domain of the smoothed binary images. All three classifiers (neural-net, linear and
nearest-neighbour) were able to classify the test set correctly (100%). The general trend in classifier
performance suggests that more than 6 rings perform better for any number of wedges, but that an
upper limit exists for the dimension of the feature vector, as classifier performance drops for feature

vector types with high dimensions.
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4.3 Classification using minutiae

The minutiae are small unique features on a fingerprint. These features are the division of a ridge into
two or more ridges, known as forks, ridge endings, islands or loops, crossovers and bridges. Examples

of such minutiae are shown in Fig. 4.28.

/\/ RIDGE ENDING

FORK

/O\ LOOP

CROSSOVER

BRIDGE

Figure 4.28: Typical minutiae used in fingerprint recognition

By using these minutiae in a structural manner (matching structures such as bridges with one another)
[5] classification which is robust with respect to transformations such as rotation and translation as

well as distortions can be obtained.

Unfortunately we were unable to use the minutiae for feature-based recognition as it is very difficult
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to identify the minutiae reliably in a fingerprint image which is not of a good quality. The original
greyscale image must be clear and of a good quality otherwise false minutiae will be extracted. The
consequence of the extraction of false minutiae is false classification. Prior to the extraction of the
minutiae extensive preprocessing is needed because these minutiae can only be extracted from a
thinned binary image such as in Fig. 3.14. Unfortunately not all the images are as clear and reliable

as this one.

Another problem presents itself in that there is no guarantee that the part of the fingerprint available
to the classification system contains any minutiae. Usually the middle portion of the image is available

which does not have many minutiae. Therefore no reliable classification can be done on such an image.

Due to the problems presented no meaningful classification results were obtained. This method does
have merit but good quality prints of the complete finger are required before any successful experiments

can be conducted.

In our next chapter (Chapter 5) we present results obtained in the other main approach to fingerprint

recognition we investigated. This approach is the correlation-based branch of Fig. 2.4.
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Correlation-based recognition

For good classification by means of a correlation classifier extensive preprocessing is needed to trans-
form the greyscale image into a usable binary image. A binary image is used during correlation so that
the background of an image does not affect the classification performance. The influence of darker or
lighter images is also removed by using the binry image during correlation. The preprocessing we im-
plemented consisted of the three stages shown in Chapter 3: binarization of the greyscale image using
the recursive greyscale edge follower (Fig. 3.6), the smoothing of the binary image using an adaptive
window concept (Fig. 3.7), and the thinning of the smoothed image into its skeleton (Fig. 3.14). The
images obtained by the application of these preprocessing algorithms are noiseless binary skeletons of

the original images.

Correlation in the spatial domain is very time consuming, especially for large images as was shown
in Section 2.3.4. For this reason we implemented the correlation classifier in the frequency domain.
Correlation in the spatial domain is equivalent to the inverse Fourier transform of the product of the
Fourier transforms of the images being correlated. For two images fi; and fs, this can be mathemati-

cally expressed as follows:

fl(m)y) ® f2(l';y) hd Fl(uyv) X FZ*(U)U)

where ® denotes the correlation in the spatial domain, * denotes the complex conjugate in the fre-

quency domain and F; and F5 are the Fourier transforms of f; and f5 respectively.

In the correlation classifier an unknown test image is classified in the following manner:

The Fourier transform is computed for the unknown test image. This Fourier transform is multiplied
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with each of the known “training” images’ Fourier transforms (which are calculated and stored before
hand). The inverse Fourier transform is computed for this product, resulting in a two-dimensional
correlation function. The correlation image is then searched for its largest value. This value is
normalized with the number of binary ones in the unknown test image. This normalized value is
known as the correlation value. The process of multiplying, taking the inverse Fourier transform,
searching and normalizing is repeated for all the “training” images. Finally the largest correlation
value between the test image and and all the training images is found and the test image is labelled
as belonging to that class for which the correlation value was the largest. This procedure was first

suggested for optical implementation [20].

We normalize the largest value of the inverse Fourier transform with the number of binary ones in the

test image so that the maximum correlation between two images cannot be higher than 1.

5.1 Simulation results

We performed experiments with the correlation classifier on binary images at different stages in the
preprocessing as described in Chapter 3. The first experiment was performed on unsmoothed binary
images. This was followed by an experiment on the smoothed binary images. The last two experiments
were conducted on thinned binary images. The first of these two experiments used the thinned binary
images extracted from unsmoothed binary images, while the last one used the thinned binary images
extracted from the smoothed binary images. We describe the results obtained from the experiments

in the following subsections and show the labels as well as correlation values obtained (Tables 5.1 to

5.4).

5.1.1 Unsmoothed binary images

In the first experiment performed, binary images without any smoothing or thinning were used. The
correlation classifier was able to correctly classify 76% of the test images. Table 5.1 shows for each
class the correct class, the label assigned to it by the correlation classifier, and the correlation value
that led to the specific labeling for that class. The classes incorrectly labelled were classes 8 (labelled
as 1), 9 (labelled as 5), 12 (labelled as 10), 13 (labelled as 5) and 19 (labelled as 5). It can be seen
that the correlation values are low (0.61 and lower), which suggests that the matches found between

the test and a training image are not very reliable.
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Unsmoothed binary

Correct class

Labelled as

Correlation value

© 0 I O Ot R W N =

e e e e T e e T e e S S
© 00 =~ O Ot =W N = O

20

- O Ol ks W N

1 x
9 %
10
11
10 x
9 %
14
15
16
17
18
9 %
20

0.39
0.59
0.48
0.53
0.61
0.60
0.60
0.46
0.42
0.46
0.54
0.55
0.56
0.58
0.37
0.53
0.53
0.48
0.51
0.49

Performance:

75% correct

Table 5.1: Correlation classifier performance, unsmoothed binary images
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Smoothed binary
Correct class || Labelled as | Correlation value
1 1 0.42
2 2 0.62
3 3 0.53
4 4 0.56
) 5 0.63
6 6 0.61
7 7 0.61
8 1 x 0.49
9 5 X 0.44
10 10 0.50
11 11 0.55
12 10 x 0.58
13 5 X 0.59
14 14 0.62
15 15 0.39
16 16 0.56
17 17 0.57
18 18 0.51
19 5 X 0.53
20 20 0.53
Performance: 75% correct

Table 5.2: Correlation classifier performance, smoothed binary images

5.1.2 Smoothed binary images

In the next experiment smoothed binary images were used. The classifier performance did not im-
prove from that obtained from the unsmoothed binary images, i.e. 75% was correctly classified (see
Table 5.2). The same classes were incorrectly labelled in this experiment as in the previous experiment.
The only difference in results between these two experiments is the correlation values obtained in the
experiments. In general the correlation values were slightly higher for the smoothed binary images
than that of the unsmoothed binary images. In the previous experiment the average correlation value

was 0.51 compared to 0.54 of the current experiment.

Fingerprint recognition



Chapter 5: Correlation-based recognition page 62

Unsmoothed binary’s skeleton
Correct class || Labelled as | Correlation value
1 1 0.16
2 2 0.25
3 3 0.19
4 4 0.18
) 5 0.24
6 6 0.22
7 7 0.17
8 8 0.16
9 9 0.12
10 10 0.14
11 11 0.15
12 12 0.15
13 5 X 0.15
14 14 0.16
15 15 0.13
16 16 0.15
17 17 0.17
18 18 0.18
19 5 X 0.15
20 20 0.19
Performance: 90% correct

Table 5.3: Correlation classifier performance, unsmoothed thinned binary images

5.1.3 Thinned images extracted from unsmoothed binary images

In our next experiment the skeletons of the unsmoothed binary images were used. The classifier
performance improved from 75% obtained in the previous experiment to 90% in this experiment, as
shown in Table 5.3. Only two classes were labelled incorrectly (13 labelled as 5, and 19 labelled as 5).
The improvement in classifier performance demonstrates the merit of using preprocessing algorithms

in pattern recognition.
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Smoothed binary’s skeleton
Correct class || Labelled as | Correlation value
1 1 0.16
2 2 0.24
3 3 0.18
4 4 0.17
) 5 0.21
6 6 0.22
7 7 0.17
8 8 0.16
9 9 0.12
10 10 0.13
11 11 0.16
12 12 0.13
13 13 0.14
14 14 0.15
15 15 0.12
16 16 0.14
17 17 0.17
18 18 0.18
19 5 x 0.14
20 20 0.17
Performance: 95% correct

Table 5.4: Correlation classifier performance, skeleton from smoothed binary images

5.1.4 Thinned images extracted from smoothed binary images

Our final experiment using the correlation classifier used skeletons extracted from smoothed binary
images. The classifier performance improved once again, from 90% obtained from skeletons extracted
from unsmoothed binary images to 95% using the skeletons of the smoothed binary images. Table 5.4
shows that the only class incorrectly labelled is class 19 (labelled as class 5). Visual inspection of

class b reveals that it is a very general type of fingerprint without any major features.

The results clearly show the improvement obtained in classifier performance by the application of the

preprocessing algorithms. However, the computational burden of computing the Fourier transform for
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each test image and each training image, followed by an inverse Fourier transform calculation of the
product of these two Fourier transforms makes the correlation classifier unsuitable for use in a fast

fingerprint recognition system.

In our final chapter (Chapter 6) we compare the results obtained in the various experiments as
described in Chapters 4 and 5. Finally, a conclusion is made and we propose possible extensions to

some of the approaches we have investigated.
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Comparison

In this chapter a comparison between the various results obtained in experiments from Chapters 4
and 5 is made. The “best” classification scheme in terms of computation expenses and classification
performance is identified. Possible extensions to some of our schemes are proposed and finally a

conclusion is made.

6.1 Classification performance

In the feature-based approach described in Chapter 4 the best classification performance (100%) was
obtained for features extracted from the two-dimensional frequency transform of the smoothed binary
images. All three the classifiers (neural-net, linear and nearest-neighbour) were able to classify the

test set correctly. This means that the classes are well seperated in this feature space.

Features extracted from the Fourier transform of the unsmoothed binary image performed better with

all the classifiers than the features extracted from the greyscale and thinned binary images.

Classification performance obtained from the correlation classifier was worse compared to the 100% test
classification obtained from the features of the frequency plane. The best classification performance
using the correlation classifier was on the skeleton of smoothed binary images (95%). The performance
of this classifier on the smoothed binary images and unsmoothed binary images was similar (75%),
but not as good as its performance on the skeletons of images (smoothed binary’s skeleton 95% and

unsmoothed binary’s skeleton 90%). The classification obtained from the thinned binary images was
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good, but the computational burden associated with the correlation classifier severely handicaps this

approach compared to the feature-based approach.

The best performance obtained from features extracted from the directional image were those based
on the variance-bins type of feature vector. The best classification performance obtained was 90%
with the neural-net classifier using a feature vector constructed from a directional image which was
quantized into 8 subdirections. The same classification performance was obtained with these features
using the linear classifier. The best classification performance obtained with the nearest-neighbour
classifier was 85%. To obtain this, a histogram-type of feature vector was used, constructed from a

directional image quantized into 24 subdirections.

6.2 Computational burden

6.2.1 Feature extraction and preprocessing

To minimize the computation time with respect to feature extraction, the best approach for classifi-
cation is the correlation-based approach because no features are extracted from the images. However,
extensive preprocessing is needed to transform the greyscale image into a thinned binary image which

gave the good classification performance of 95%.

The next best approach is that using the directional image. No preprocessing of any kind is conducted
on the image before the features are extracted. However, computation time of the features can increase

if a high number of quantized levels are used.

Using features extracted from the frequency plane of the images can be quite expensive. For features
to be extracted, a Fourier transform has to be performed on a preprocessed image (preprocessing
includes binarization, smoothing and thinning). The calculation of the Fourier transform as well as

the preprocessing make this method very expensive to use.

With regard to the preprocessing and the feature extraction the best method is that based on the
directional image. No preprocessing is needed and the time spent in extracting the features is minimal

if the number of quantized levels is kept low.
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6.2.2 Classifiers

To identify the best classifier a distinction between the time spent in training and the time spent to
classify a test vector must be made. The general classifier performance does not suffer if the training
time is extensive as the training normally occurs off-line. Therefore the only real measurement occurs

during the classification of a test vector.

During training the nearest-neighbour classifier is the fastest as no real training occurs. The linear
classifier needs training, that is a suitable minimum must be found for the weight matrix W. This
does take a certain amount of time but not as much as that needed to train the neural-net classifier.
During training of the neural net iterations with different initial values for the weight matrix W and
different numbers of hidden neurons must take place. This can be very time consuming. Fortunately
the training is done off-line, therefore this problem does not handicap the neural-net classifier in terms

of classifier speed.

During general use the fastest classifier is the linear classifier, followed by the neural-net classifier. The
slowest classifier is the nearest-neighbour classifier. The linear and neural-net classifiers are very fast.
A feature vector can be labelled as belonging to a class as soon as the vector propagated through the
classifier. The linear classifier can achieve this a bit faster than the neural-net classifier as the number
of propagating steps is less for the linear classifier than that of the neural-net classifier. To obtain a
classification from the nearest-neighbour classifier numerous calculations have to be performed. This

severely handicaps the nearest-neighbour classifier.

The correlation classifier cannot compare with any of the other classifiers in terms of classification
speed. The calculation of the Fourier- and inverse Fourier transforms makes this classifier too slow

when implemented digitally.

6.3 The best

Features extracted from the frequency plane of smoothed binary images using the linear classifier
are to our meaning the best suited for practical implementation. The data generation and Fourier
transform can be implemented with optics, which can be extremely fast. The binarization, smoothing,

feature extraction and classification can be done with dedicated hardware.

Our second choice is the correlation classifier using skeletons of smoothed binary images. The process
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of correlation is time consuming but once again a dedicated system can successfully overcome this

problem.

The third option, the variance-based feature vector extracted from the directional image, with a
neural-net classifier is by no means totally unsuited for use in a fingerprint classification system. The
ease with which features are extracted without any preprocessing makes this approach ideal for a
classification system. However, these features on their own are inadequate and must be combined

with some other features for reliable classification.

6.4 Extensions to the system

To improve classification in general, the method of data generation has to be improved. The problems
that exist with the current optical system such as the contrast and focus can be overcome with
very high quality prisms and lenses. Once the general quality of the fingerprint has been improved,

classification performance will improve, because noise which disrupts performance will be suppressed.

Once the data generation method is fast and reliable, classification using the minutiae of a fingerprint
can be used with a neural-net classifier for classification purposes. Using the minutiae to construct a
feature vector will greatly enhance the classifier performance. All indications are that these minutiae-
type of feature vectors should be very robust and well-suited for classification purposes. Another
possibility is the combination of different types of feature vectors. A good example could be the
combination of features extracted from the directional image combined with minutiae (the directional
image’s feature vector used as primary classification and the final confirmation done by using the

minutiae).

6.5 Summary and Conclusion

In this thesis the problem of fingerprint recognition as well as different possible solutions were de-
scribed. Methods of data generation, preprocessing, feature extraction and classification were investi-

gated.

Two methods of data generation were described, the well known ink-and-paper method and an op-
tical data generation method using a 90° prism. Various preprocessing algorithms were developed.

They include a binarization algorithm and a smoothing algorithm. These two algorithms are used in
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conjunction with a line-thinning algorithm to produce clear and smooth thinned binary images.

Two approaches to fingerprint recognition were investigated, a correlation approach and a feature-
based approach. In the feature-based approach, features extracted from the directional image, features
extracted from the frequency domain and features extracted from the fingerprint images themselves
were considered. These features were tested with various classifiers (neural-net, linear and nearest-
neighbour) for performance. Features extracted from smoothed binary images’ frequency domain and

a linear classifier produced 100% classifier performance.

In the correlation approach, images at different stages of preprocessing were used to test classifier

performance. Smoothed thinned binary images performed the best for this approach (95%).

The performance of all the methods investigated does not match those obtained by manual methods
using minutiae. The reason for this is the limited intelligence built into the classifier schemes. This does
not compare favourably with the intelligence of a human using one of the manual methods, especially
if the quality of the fingerprint image is suspect. However, the classification speeds obtained in general

are much faster than those that could be obtained using manual methods.

Good classification performance was obtained in general. However, the main problem which hampers
the classification of a fingerprint image is still not solved. This is data generation, that creates problems
for both the methods described in this thesis. Some of the problems can be solved with preprocessing
techniques but much better performance can be obtained if the images are clear and of a good quality
to start with. In general, good classification of fingerprint images is possible, but performance will

only be perfect once the quality of the original print is of an acceptable standard.

With the quality of fingerprints presently obtainable with optical data generation and the algorithms
investigated in this thesis, successful fingerprint classification systems can be developed for several
application areas such as access control. However, the success rate of the algorithms does not yet

render them adequate for high security applications.
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Abstract

In this thesis methods of automatic fingerprint recognition are investigated. An introduction to
fingerprint recognition as well as previous research done in this field are presented. This is followed
by descriptions of the approaches we have followed while investigating the subject. These include a
feature-based approach and a correlation-based approach. In the feature-based approach features are
extracted from fingerprint images (e.g. the directional image) or transformations of the images (e.g.
the Fourier transform) to use with various classifiers. These classifiers include the neural-net, linear

and nearest-neighbour classifiers.

In the correlation-based approach fingerprint images are classified using a correlation classifier, without

any feature extraction.

Simulation results obtained from the two approaches followed are presented. From these results the
best method of fingerprint recognition is identified, before we conclude with a discussion of possible

extensions to some of the approaches.



